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Abstract—Activity Recognition is important in order to facil-
itate elderly residents’ and their caregivers’ needs. This problem
has been widely investigated using different methods including
probabilistic and Markovian approaches. The focus of this
paper is to perform activity recognition more accurately than
existing approaches using non-intrusive sensors. We represent
motion sensors of smart environments in a graph and resident’s
movements as edges in the graph. Then graph-based features are
extracted and used as input for a Support Vector Machine. These
features have been combined with motion-sensor based features.
This method has been compared with three other widely used
approaches, Naive Bayes, Hidden Markov Model (HMM) and
Conditional Random Fields (CRF) on three different datasets
from three smart apartments. In all cases, the method based
on graphical features outperformed one of the state of the art
methods for activity recognition.

I. INTRODUCTION

Our goal is to evaluate the use of graph representations
and mining to improve performance on recognition and pre-
diction tasks for Wireless Sensor Networks (WSN). Most
WSN applications focus on monitoring living beings, sensing
object interaction and tracking locations visited. WSN have
been deployed for Outdoor Environmental Monitoring such
as Forest Fire Detection [1], Flood Detection [2], Habitat
Monitoring [3]; for Indoor Environmental Monitoring such
as Reduce Energy Waste [4], Fire and Smoke Detection [4];
Support for Logistics such as Inventory Control Application
[4]; for Human-Centric Applications such as HealthCare [5],
Tracking and Monitoring Doctors and patients inside a hospital
[4] and Tracking and Monitoring elderly residents inside their
house [6]. As our first application area, we started assessing
the use of graph representations in smart homes designed for
independent living by elderly residents. Smart homes equipped
with sensors for monitoring resident’s activities are beneficial
due to increase of aged population, high cost of formal health
care and importance of independent living of elderly people
in their own home. Automating the recognition of activities
is important to monitor whether individuals are being able
to complete Activities of Daily Living (ADL) at their home.
Activity recognition has been identified as the topmost need
for Alzheimer’s patients’ caregivers in a survey of assistive
technologies [6].

We attempted to improve performance of activity recogni-
tion over existing approaches using a graph representation of
non-intrusive sensor data. We propose a graph representation
for sensor nodes deployed in smart apartments. Residents’
movement information captured by these sensor nodes has also

been represented in the graph. Then we extract information
from the graph as features for Machine Learning techniques.
Our goal is to improve accuracy of activity recognition that
will facilitate better remote functional health monitoring and
will enhance the ability to provide technological help more
accurately.

II. RELATED WORK

Extensive research has been done to solve the problem
of activity recognition using various approaches. In previous
works, the focus has been on non-graphical features such as
motions sensors, temporal information during activity such as
time of day, day of week, whether the day is weekend or
not, activity length in time (seconds), previous/next activity,
number of kinds of motion sensors involved, total number of
times motion sensor events triggered and energy consumption
for an activity (in Watts). Chen et al. [7] selected the most
important features based on two feature selection techniques
- Minimal Redundancy and Maximal Relevance (mRMR) and
Mutual Information and used four different Machine Learning
techniques for recognizing activities: Bayes Belief Networks,
Artificial Neural Networks, Sequential Minimal Optimization
and LogitBoost Ensemble. These methods have been compared
with each other in this work, but have not been compared
with other widely used techniques such as Naive Bayes and
HMM. Singla et al. [8] used a Markov model with and
without temporal information and observed improved accuracy
for activity recognition. They applied Naive Bayes, Markov
Model and Hidden Markov Model to interleaved and scripted
Activities of Daily Living (ADL) in [9]. Nazerfard et al.
[10] used Conditional Random Fields, a probabilistic approach
which can capture interdependence between features and has
been fed with 5 types of features: sensors, time of day, day
of week, previous activity and activity length. Though HMM
and CRF have been used for segmented activity recognition
and are available as part of a tool on [11], there is still need
of and scope to recognize resident activities more accurately.
We try a graph-based approach in this paper to obtain better
performance for the activity recognition task.

Graph-based approaches have been applied to some wire-
less sensor network applications. In [12], time-dependent
spatio-temporal networks such as road networks have been rep-
resented using nodes and edges of a graph where locations can
be represented as nodes and road segments can be represented
as edges with time-dependent network properties like network
congestion as edge attributes. The authors proposed a graph
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representation of such a network with time series attached as
attributes on nodes and edges. This representation can handle
change of edge attributes and existence and disappearance
of edges with time. Using such graphical representation, an
algorithm also has been proposed to answer queries that might
change with time. For example, the shortest route in a road
network might change with time due to change of traffic. Using
their approach, the shortest route for a given start time or for
a range of time can be calculated in an efficient way.

Long and Holder [13] used graph-based approaches to
solve the problem of activity recognition in smart environ-
ment. In [13], three graph-based methods have been used:
frequent subgraph technique to generate feature vectors for
various learning algorithms, SVM with a graph kernel and
nearest neighbor approach with a graph comparison measure.
Results of these three methods have been compared with
non-graph SVM method with a goal of solving a 10-class
activity recognition problem in the smart home. An ensemble
of all these four methods has also been used to classify
unscripted, multi-resident and interleaved activities. Though
none of the graph methods showed improved accuracy, all the
graph methods exhibited uncorrelated error with the baseline
non-graph method and with each other indicating potential of
applying more graph methods towards solving this problem.

III. METHODOLOGY: APPLYING GRAPHICAL FEATURES

For representing smart home data as a graph, we consider
each motion sensor in the smart apartment and represent it as
a vertex in the graph. For each labeled activity, we construct a
graph. When two consecutive sensors are turned on during a
labeled activity, an undirected edge is added between the two
corresponding vertices in the graph. Two motion sensors can be
triggered consecutively multiple times, that is, an edge can be
triggered multiple times. We store this count of multiple edges
being triggered as edge attributes. Same motion sensor can be
triggered consecutively in smart environment and hence, we
allowed self-loops in our graph representation to capture this
information.

We validated our approach on four datasets from CASAS
project [14] that are varied in terms of apartment layout,
number of residents and number of activities (both scripted
and non-scripted). In Table I, we summarized data charac-
teristics for these four smart testbeds including total number
of motion sensors in each testbed, number of residents, total
number of possible edges including self-loops in our proposed
graph representation, total number of edges triggered and
total number of activities for each dataset. In kyoto dataset,
residents performed scripted activities; motion sensor data
were collected from Cairo, Aruba and Tulum where residents
performed unscripted real-life daily activities. Cairo and Aruba
are single-floor apartments; Tulum and Kyoto are two-storey
apartments.

We show example graphs to illustrate our representation
on Cairo, Aruba, Tulum and Kyoto smart apartment layouts
in Fig 1, 2, 3 and 4 respectively for different activities. In
these figures, vertices of our graph representation are aligned
with the corresponding motion sensor nodes in the apartment
layout, lines connecting two motion sensors represent edges
in the graph representation and the thickness of these lines
signify the corresponding edge attributes.

TABLE I. CHARACTERISTICS OF FOUR DATASETS

Datasets Cairo Aruba Tulum kyoto
Residents 2+pet 1 2 400

Sensors 27 31 31 27

Possible Edges 378 496 496 378

Triggered Edges 350 435 486 289

Activities 10 11 16 16

After graph construction for an activity, we extract graph-
ical features from it. We consider each possible edge ever
triggered in the data as a feature. If an edge exists in this
graph for the current activity, we assign corresponding edge
attributes as the value in the feature vector. If an edge does not
exist in the graph, default value for that feature is zero. Edges
that have never been triggered for any activity in the dataset
were not included in the feature list. In our initial experiments
with the Cairo dataset, the total number of graphical features
extracted in this way is 350. We also experimented with a
feature whose value is 1 if that edge is triggered at least once
during that activity. We also tried representing the transition
from one sensor to another sensor as a directed edge. After
experimenting with one-edge path as features, we tried to use
all possible combination of 2-edge paths as features.

After constructing the graphical feature vector, we provided
this feature vector to the Support Vector Machine (SVM) for
classifying 10 activities of the resident from the Cairo testbed.
Libsvm from Weka [15] with default settings was used to run
this experiment with 10-fold cross-validation. Libsvm uses one
against one method for multi-class classification by SVM. [15]

We used a non-graph method as the baseline for comparing
with our graphical features based approach. If a motion sensor
has been on during an activity we represent it with a 1 and
if that motion sensor is never on during an activity then we
represent the value of this motion sensor as zero. We compute
these values for all motion sensors during an activity and
construct a feature vector. We provide this feature vector to the
Support Vector Machine learning algorithm. We also computed
how many times each motion sensor has been turned on during
an activity and used this count as a feature for non-graph
method.

We compared our graphical feature based approach with
three widely used approaches: Naive Bayes, Hidden Markov
Model (HMM) and Conditional Random Fields (CRF). We
used the Activity Recognition (AR) tool, ar1.3 that is available
at [11] and that implemented all these techniques for recogniz-
ing segmented activities. For these three AR algorithms, there
are five feature options that can be used. Those are the list of all
sensors with status on/off (numeric), time of day (categorical),
day of week (categorical), previous activity (categorical) and
activity length in terms of number of sensors (numeric). For
these three baseline methods, we used default settings for these
features as set in the AR tool.

Initially we experimented on the Cairo dataset which is a
multi-resident smart apartment with 27 motions sensors. Ten
activities have been labeled in the Cairo Dataset. These are
Laundry, Sleep, Night wandering, Lunch, Dinner, Leave Home,
Breakfast, Work in office, Bed to toilet and Take medicine. We
applied the Support Vector Machine on both non-graph and
graphical feature vectors for classifying the 10 activities. We
handled interleaved activities as separate activities here. After

166166



(a) Graph Representation for ’breakfast’ (b) Graph Representation for ’take medicine’

Fig. 1. Cairo: Graph representation on the apartment layout

(a) Graph Representation for ’work’ (b) Graph Representation for ’housekeeping’

Fig. 2. Aruba: Graph representation on the apartment layout

(a) Graph Representation for ’watch TV’ (b) Graph Representation for ’meal preparation’

Fig. 3. Tulum: Graph representation on the apartment layout

getting promising results from Cairo, we applied the graphical
feature method on other smart home datasets, namely, Aruba,
Tulum and Kyoto, and compared the results with the baseline
methods mentioned above.

IV. RESULTS

A. Graph Features Vs Non-Graph Features

For the non-graph method, we provided the set of all
sensors being on/off as the feature vector to the SVM with RBF
kernel. For the graph method, we provided graphical features
extracted using the approach described in the methodology
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(a) Graph Representation for ’cook’ (b) Graph Representation for ’sweep kitchen and dust
living room’

Fig. 4. Kyoto: Graph representation on the apartment layout

TABLE II. CAIRO DATASET: SVM (RBF KERNEL)

Features Accuracy in percentage
Non-graph features 65.86

Graph features (Existence of Edge) 50.1

Graph features (Edge Attributes) 71.31

Fig. 5. Cairo: SVM (RBF) Vs SVM (Linear Kernel)

section. We present the results in Table II. From Table II,
performance in terms of accuracy has been improved using
edge attributes as graphical features compared with non-graph
features. We tried both existence of edges (1/0) and count of
edges during an activity and the later approach provided better
performance of 71.31% accuracy whereas accuracy of activity
recognition from the former method is 50.1%.

We also compared each method using a linear kernel for
the SVM instead of the RBF kernel. We show the result in
Table III. We observe in Fig. 5 that the SVM linear kernel
performs better than the RBF kernel for each method and
use of graphical features with edge count provided better
performance than baseline of using count of motion sensor as
non-graph features. The result of using directed edges from one
node to another node representing the sequence of sensor nodes
triggering in time is also shown in Table III. But representing
transitions with directed edges resulted in less accuracy than
the undirected edge representation.

We used filtering techniques to assess the effect of feature
selection on the accuracy of classification. In Table IV, we

TABLE III. CAIRO DATASET: SVM (LINEAR KERNEL)

Features Accuracy in percentage
Non-graph features 70.10

Graphical Features (Existence of Undirected Edge) 71.31

Graphical Features (Count of Undirected Edge) 76.57

Graphical Features (Directed Edge) 74.14

TABLE IV. CAIRO DATASET: SVM (LINEAR KERNEL) WITH

ATTRIBUTE SELECTION

Filtering
Techniques

Accuracy in percentage Selected Attributes
(Total Attributes)

Consistency Subset
Eval with Search
Method: best First
Search

75.96 23 (350)

Chisquared attribute
Evaluation with
Search method:
Ranker with
Threshold 1

77.17 143 (350)

mentioned the attribute evaluators used from Weka with ”full
training set” as the selection mode, corresponding search meth-
ods and results. Graphical features along with these feature
selection techniques produced similar performance, but they
reduced the total number of features needed for classification
significantly while still providing the improved result.

B. Two-edge Transitions

We observed two edge transitions between motion sensors
as features and applied SVM on this feature vector. For the
Cairo dataset, the possible number of sensor-node triples is
19,683 among which 4,163 triples are triggered in the dataset,
resulting 4,163 features in the feature vector. Accuracy for
this method was 16.22%. Because including this additional
edge information led to worse performance, we did not try
generalizing to k-edge paths for each feature.

C. Graph Features to Aruba, Tulum and Kyoto datasets

Next we applied non-graph features and graphical features
to other testbeds. We collected datasets for the Aruba, Tu-
lum and Kyoto testbeds from Washington State University’s
CASAS Project website [14]. For each dataset, our implemen-
tation discovers all activities of residents from label in each test
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TABLE V. NON-GRAPH METHOD: MOTION SENSOR ON/OFF VS

COUNT OF MOTION SENSOR

Dataset Motion sensor On/Off Count of motion sensor
Cairo 70.10 72.73

Aruba 91.86 93.31

Tulum 71.48 80.03

Kyoto 67.15 83.20

Fig. 6. Non-graph features: Motions sensors on/off Vs Count of Motion
Sensors

TABLE VI. GRAPH METHODS: EXISTENCE OF EDGE VS COUNT OF

EDGE

Dataset Existence of edge Edge attribute
Cairo 71.31 76.57

Aruba 93.29 93.41

Tulum 76.11 76.86

Kyoto 77.85 83.22

Fig. 7. Graphical features: Existence of edges Vs Count of edges

apartment as it goes through the dataset and constructs non-
graph and graphical feature sets. We applied two non-graph
methods to these datasets as described in the methodology
section: one is using off/on status of each motion sensor as
a non-graph feature and another is count of each motion
sensor being triggered on as a non-graph feature. Result of this
experiment is shown in Table V and is plotted in Fig. 6. We
observe that the count of motion sensors as features improved
the accuracy over motion sensors being on/off as features. For
graph methods, we used two approaches as well for selecting
graphical features: existence of edges (0/1) and count of edges.
From Table VI and plot in Fig. 7, we see that later method
provided better performance compared to the former method.

As count of motion sensors as non-graphical features and
count of edges as graphical features provided better result, we
selected these two approaches for comparing between non-
graph and graph-based method on each dataset. Moreover, we

TABLE VII. COMPARISON: NON-GRAPH METHOD VS GRAPH

METHOD

Dataset Non-Graph
Method (Count of
Motion Sensors)

Graph Method
(Edge Attributes)

Combination
of Non-Graph
and Graphical
Features

Cairo 72.73 76.57 75.76

Aruba 93.31 93.41 93.24

Tulum 80.03 76.86 81.63

Kyoto 83.20 83.22 85.07

Fig. 8. Non-Graph Vs Graph Method on different datasets

Fig. 9. Graphical Features vs Other Graph Approaches

combined non-graph features and graphical features into one
set of feature vector and provided it to SVM linear to evaluate
the effect of this combination. We presented the comparison
among non-graph, graph-based and combination of these two
methods in Table VII and plotted in Fig. 8. We observe that the
graph method improved accuracy over the non-graph method
for each of these datasets except Tulum. However, we got
improved accuracy for combination of both kind of features for
Tulum and Kyoto dataset compared to both non-graph features
only and graphical features only. We can conclude from this
result that improved performance have been obtained for all of
these datasets using either graphical features or combination of
non-graph and graphical features compared with the baseline
of non-graph features only.

D. Graph Method vs Other Approaches

Here, we compare the Graphical Feature method with Non-
graph SVM, Graph SVM, Subgraph SVM, Nearest Neighbor
and an ensemble of the these four as proposed in [13] and
present the comparison in Fig. 9. These results show that
the graphical feature based method outperforms the previous
results from [13].

We also compare the graph-based method with other base-
line methods used widely in smart home research, namely,
Naive Bayes, Hidden Markov Model and Conditional Random
Field. We used AR tool from [11] to run Naive Bayes, HMM
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TABLE VIII. COMPARISON OF GRAPHICAL FEATURES WITH OTHER

METHODS

Dataset NB HMM CRF Non-
graph
fea-
tures

Graphical
features

Non-graph +
graphical fea-
tures)

Cairo 65.04 73.57 69.67 72.73 76.57 75.76

Aruba 91.18 88.87 91.83 93.31 93.41 93.24

Tulum 62.30 61.68 38.28 80.03 76.86 81.63

Kyoto NA NA NA 83.20 83.22 85.07

Fig. 10. Graph Methods Vs other baseline methods

TABLE IX. COMPARISON:EXECUTION TIME

Dataset CRF Non-
graph
features

Graphical
features

Non-
graph+graphical
features

Cairo 358m 32s 55s 8s 8s

Aruba 415m 32s 25m 11s 16m 43s 21m 33s

Tulum 1352m
56s

13m 4s 30m 43s 48m 9s

Kyoto NA 43s 47s 1m 15s

and CRF on these four datasets. Along with other three
datasets, we chose kyoto dataset to assess performance on
data that is collected from many participants. Kyoto (400
participants) is different from other three test datasets as
many individuals participated in scripted activity experiments
separately at this testbed on different days and times. This
dataset does not contain day of week information which is
one of the features used by AR in default settings resulting
unavailability of the result and mentioned as ’NA’ in Table
VIII. We extracted non-graph and graph features though for
this dataset and presented the result in Table VIII.

From Table VIII we observe that graph-based SVM outper-
formed other widely used baseline methods for each of these
datasets. Moreover, a drawback of CRF is that it has long
execution times which is shown in Table IX comparing with
non-graph and graphical approaches. AR execution time on
kyoto is unavailable (NA) due to the same reason mentioned
for Table VIII. We observe from Table IX that it needed 6
to 22 hours of execution time for CRF on Aruba and Tulum
dataset while other methods executed in range of minutes.

V. CONCLUSION

In this work, we validated our graph-based approach on
three different testbeds of single resident, multi-resident and
multi-resident with a pet, with residents performing non-
scripted activities. The graphical feature based approach im-
proved the accuracy of activity recognition for all of these

datasets compared with other widely used baseline methods for
motion sensor data. We applied this method on segmented data
with labeled activities. We plan to apply similar methods on
streaming data from smart environments and try to recognize
activities. We also plan to incorporate temporal information
from time-based sensor stream in the graph to further improve
the performance. Being inspired by evaluation of graphical
features method in smart home data, we are going to assess
usefulness of this method and other graph methods on datasets
from other wireless sensor networks that are widely being used
for tracking and monitoring.
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