
Classification in Dynamic Streaming Networks
Yibo Yao and Lawrence B. Holder

School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164, USA

Email: {yibo.yao, holder}@wsu.edu

Abstract—Traditional network classification techniques will
become computationally intractable when applied on a network
which is presented in a streaming fashion with continuous
updates. In this paper, we examine the problem of classification in
dynamic streaming networks, or graphs. Two scenarios have been
considered: the graph transaction scenario and the one large graph
scenario. We propose a unified framework consisting of three
components: a subgraph extraction method, an online version
of an existing graph kernel, and two kernel-based incremental
learners. We demonstrate the advantages of our framework via
empirical evaluations on several real-world network datasets.

I. INTRODUCTION

In recent years, network data has gained much popularity
due to a great amount of information becoming available in
the form of social networks, hyper-linked websites, chemical
compounds, and so on. A research focus has been to extend
traditional machine learning techniques to perform supervised
classification tasks on these network, or graph, datasets. A de-
tailed investigation of various graph mining and classification
algorithms as well as their applications can be found in [1].

Most graph classification approaches use kernel machines,
which compute similarities between graphs by mapping them
to vectors in a high dimensional space and then computing
their inner products. Conventionally, graph kernels assume that
the graph data is limited in size and can be stored in memory or
local storage, which allows the methods to scan the data mul-
tiple times within reasonable time constraints. However, this
assumption has been violated since the recent growth in the
sizes of real-world graphs. These graph datasets are measured
in terabytes and heading toward petabytes. Furthermore, they
are generated in a streaming fashion with frequent updates
(e.g., insertions/deletions/modifications of nodes/edges). For
example, social networks are continuously formed by the in-
creasing social interactions among entities. Due to the dynamic
nature of those networks, graph classification methods which
involve enumerating substructures (e.g., graph kernel methods)
are incapable of calculating similarities effectively between
graphs for the following reasons.
• It is impossible to hold all information in memory or

local storage. In order to maintain a modest speed of
accessibility, old information must be removed from
storage, which makes it infeasible to compute the global
kernel matrix.
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• With the increasing volume of nodes and edges streamed
in, enumerating the substructures (e.g., paths, subtrees)
for graph kernels and computing their kernel matrices
will become extremely expensive or even impractical.

• The existence of noisy information may deteriorate
the classification performance or introduce unnecessary
structural complexity during the learning progress.

In order to address the above challenges, we propose a
unified framework to investigate the problem of classification
in dynamic streaming graphs. It encompasses two classifica-
tion scenarios. In the graph transaction scenario, independent
graphs are being received through a stream over time, and
we seek to classify each graph. In the one large graph
scenario, new nodes and edges are streaming in over time,
and we seek to classify the new nodes. We design an entropy-
based scheme to extract a subgraph surrounding the node
to be classified. Through the extraction step, we transform
the classification of nodes in a single large graph into the
classification of the extracted independent subgraphs, thus
reverting to the graph transaction scenario. We then propose
an online version of an existing fast graph kernel, namely
Weisfeiler-Lehman [2], to enable the kernel computation to
be performed in an online fashion rather than the traditional
batch mode. Once the kernel values are obtained, we propose
two incremental classification techniques based on SVM and
perceptron, which take the kernel values as inputs and predict
the class memberships of the independent graphs (in the graph
transaction case) or the target nodes (in the one large graph
case). The framework in this paper addresses the novel task to
learn a classification model incrementally on large streaming
graphs. In our previous work [3]–[5], we proposed an SVM-
based and a perceptron-based learners for classifying large
dynamic streaming networks. In this paper, we put these two
learning models in one unified framework and provide more
experimental evaluation to show the advantages of them.

The specific contributions of this paper are:

• Develop an online version of an existing graph kernel and
make it capable of computing kernel values for a graph
stream.

• Combine the online graph kernel and two kernel-based
learning methods (SVM and perceptron) to learn classi-
fication models for streaming graphs.

The rest of this paper is organized as follows: Section II
introduces some related research work. Section III formulates
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the problem definition. The unified learning framework is
presented in Section IV. In Sections V and VI, we establish
the experiment settings and evaluate the proposed learning
methods. Section VII concludes the paper.

II. RELATED WORK

A. Graph Kernels

Traditional machine learning algorithms assume that data
instances are represented in numerical vectors. However, this
assumption makes the algorithms incapable of catching the
relations among entities for graph data and thus fail to classify
the data effectively. Graph kernels provide an elegant solution
to classifying graph data by implicitly mapping them into a
high-dimensional space and then computing the inner prod-
ucts. Most graph kernels aim to calculate similarities between
graphs by enumerating their common substructures like ran-
dom walks [6], shortest-paths [7], subtrees [8], graphlets [9],
and frequent subgraphs [10]. The recently proposed Weisfeiler-
Lehman (WL) kernel [2] is a fast subtree kernel whose runtime
scales linearly in the number of edges of the graphs. It counts
the matching multiset labels of the entire neighborhood of
each node up to a given distance h. Because of its superiority
in time complexity, we use the WL kernel in our framework
and combine it with two kernel-based learning algorithms to
facilitate the classification in dynamic graphs. We propose
an online version of the WL kernel and make it capable of
computing kernel values incrementally.

B. Graph Stream Classification

With the emergence of streaming data, there also exists
some work on supervised classification techniques for dynamic
streaming graphs. Aggarwal and Li [11] propose a random
walk approach combined with the textual content of nodes
in the network to improve the robustness and accuracy in
classifying nodes in a dynamic content-based network. In [12],
a hash-based probabilistic approach is proposed for finding
discriminative subgraphs to facilitate the classification on
massive graph streams. A 2-dimensional hashing scheme has
been designed to compress and summarize the continuously
presented edge streams, and explore the relation between edge
pattern co-occurrence and class label distributions. Hashing
techniques have also been used in [13] to classify graph
streams by detecting discriminative cliques and mapping them
onto a fixed-size common feature space.

Li et al. [14] use their presented Nested Subtree Hash
(NSH) algorithm based on the Weisfeiler-Lehman kernel to
project different subtree patterns from graph streams onto a
set of common low-dimensional feature spaces, and construct
an ensemble of NSH kernels for large-scale graph classifica-
tion over streams. The aforementioned methods aim to find
common feature (subtree or clique) patterns across the data
stream and map this increasing number of patterns onto a
lower dimensional feature space using random hashing tech-
niques. However, they are likely to lose some discriminative
substructure patterns by compressing the expanding feature
patterns into a fixed-size feature space during the hashing

process. Meanwhile, they are not applicable to a single large-
scale dynamic graph without a subgraph extraction process.

Yang et al. [15] propose an active learning approach to
classification in streaming networked data, which reduces the
need for classified instances. They also introduce a network
sampling strategy that removes data minimizing the loss
function when exceeding a reservoir size. Their network model
is constrained to relationships between feature-vector instances
to be classified; whereas our approach does not constrain the
types of edges.

III. PROBLEM FORMULATION

A. Preliminaries

Definition 1: A labeled graph is represented by a 4-tuple,
i.e., G = (V, E ,L, l), where (1)V = {v1, . . . , v|V|} is a set of
nodes, (2)E ⊆ V × V is a set of (directed/undirected) edges,
(3)L is a set of labels, and (4)l : V ∪ E → L is a function
assigning labels to nodes and edges.

Definition 2: Let G = (V, E ,L, l) and G′ = (V ′, E ′,L′, l′)
denote two labeled graphs. G is said to be a subgraph of G′,
i.e., G ⊆ G′, if and only if (1)V ⊆ V ′, (2)∀v ∈ V, l(v) = l′(v),
(3)E ⊆ E ′, and (4)∀(u, v) ∈ E , l(u, v) = l′(u, v).

Definition 3: A subtree is a subgraph of a graph, with a
designated root node but no cycles. The height of a subtree
is the maximum distance between the root and any leaf node
in the subtree.

Definition 4: Let G be a graph and v ∈ V be a node. The
neighborhood of v, denotedN (v), is the set of nodes to which
v is connected by an edge in E , i.e., N (v) = {u|(u, v) ∈ E}.

In many application domains, including social networks,
communication networks and biological networks, the graph
structures are subject to streaming changes, such as insertions
or deletions of nodes and edges. In this paper, we focus on
streaming networks with only insertions of nodes or edges.

Definition 5: An update (denoted by Ut) on a graph is an
operation that inserts a node or an edge into the graph at time
t. A batch (denoted by Bt) is a set of updates that are applied
to the graph at time t, i.e., Bt = {U1

t , U
2
t , · · · , U

nt
t }, where

nt is the number of updates in the tth batch.
Definition 6: A dynamic streaming graph, denoted G, is

formed by batches of updates G =
⋃∞

t=1Bt. Here, t denotes
the timestamp of the corresponding update received by the
graph. Typically, Gt =

⋃t
i=1Bi denotes the graph at time t,

and G0 = ∅ represents the initial empty graph.
A real-world network usually consists of different types of

nodes and their relationships (e.g., a paper-author network).
Users are particularly interested in categorizing a certain type
of node (e.g., paper nodes in a paper-author network) with
help from the other types of nodes in the graph (e.g., author
nodes in a paper-author network).

Definition 7: A node to be classified is defined as a central
node, which denotes an entity that is going to be classified
from the original data, and a node is defined as a side node
if it is not a central one.

2
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B. Problem Definition

We now formulate the problem of classification in a dy-
namic streaming graph. The following two scenarios are
considered in our study.
• Central node classification: Given a dynamic graph with

central and side nodes indicated in its representation,
and each central node vi is associated with a class label
yi ∈ {+1,−1}, the aim is to learn a classifier using the
available information up until time t − 1, and to predict
the class membership of any new central nodes arriving
at time t. See Fig. 1 for an example.

• Isolated-graph classification: Here, we take an entire
small graph as an instance to be classified. Each isolated
graph is independent from the others and is associated
with a class label yi ∈ {+1,−1}. The goal is to build a
classification model on the instances up until time t− 1,
and to predict the class labels of the instances in the next
batch. See Fig. 2 for an example. This scenario is also
referred to as the graph transaction scenario.

Fig. 1. Central node classification. The shaded nodes denote the central nodes
of interest, and the symbols ±1 indicate their class labels. Bt denotes the
batch of updates received at time t.

Fig. 2. Isolated-graph classification. The symbols ±1 indicate these isolated
graphs’ class labels. Bt represents the set of updates received at time t, which
contains a small graph to be streamed into the underlying large graph.

IV. FRAMEWORK

A. Subgraph Extraction for Central Nodes

There are many approaches for extracting a subgraph sur-
rounding a node, e.g., 1-edge hops, random walks. However,
a star-like subgraph extracted using 1-edge hops may not be
discriminative enough since it contains less structural infor-
mation. On the other hand, a subgraph extracted by random
walks may lose discriminative information for classification,
thus deteriorating the classification performance.

We design an effective strategy to extract a subgraph for
the node by selecting the informative neighbor nodes and
discarding those with less discriminative power. For a node
vi ∈ G (vi can be a central or side node), if it is connected
to any central nodes, then we can define the entropy value
for vi. Let N (vi) be the neighbor nodes of vi, and let npos
and nneg denote the numbers of central nodes with positive
class labels and negative class labels in N (vi) respectively.
The probabilities of positive and negative instances in N (vi)
can then be estimated as follows:

p1 =
npos

npos + nneg
and p2 =

nneg
npos + nneg

(1)

The entropy computation for vi can be explicitly written as:

EN(vi) = −p1log2p1 − p2log2p2 (2)

The entropy value of vi expresses the discriminative power
of vi with respect to the two classes (positive and negative)
during the classification process. The lower EN(vi) is, the
more discriminative power vi has.

Algorithm 1 Subgraph Extraction (SubExtract)
Input: G: A graph

vc: A target central node
θ: A threshold for selecting discriminative nodes

Output: Subvc : A subgraph surrounding vc
1: I(vc) = {vc}
2: Nv = N (vc)
3: while Nv 6= ∅ do
4: pop a node v′ from Nv

5: if v′ is not visited then
6: compute the entropy EN(v′)
7: if EN(v′) ≤ θ then
8: I(vc) = I(vc) ∪ {v′}
9: mark v′ as visited in G

10: if v′ is not the same type as vc then
11: Nv = Nv ∪N (v′)
12: induce a subgraph Subgvc from G with the nodes in I(vc)

To obtain a subgraph for a target central node to be
classified, denoted as vc, an entropy threshold parameter θ
needs to be set for selecting the discriminative neighbor nodes.
Moreover, we assume that each side node must be connected
only to central nodes in our graph representation. In other
words, we do not allow interconnections between any two side
nodes in the representation. In most domains, this constraint
does not impose undue limitations on the representation of
information, because most side nodes represent attributes of
the central node, and most relationships of interest in the graph
are between central nodes. The main idea of our extraction
method is that we start from vc and keep extracting neighbor
nodes with entropy values ≤ θ until we meet other central
nodes of the same type as vc. We then induce a subgraph
from the whole large graph, in which we include all the inter-
connections between the extracted nodes. Algorithm 1 shows

3
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the detailed procedure for extracting a subgraph surrounding
a central node from a graph.

The extraction scheme will only extract, at most, all the
nodes connected to vc and all the central nodes connected
to the side nodes of vc. It aims to serve two purposes: (1)
select informative neighbor nodes for classification, and (2)
reduce the structural complexity of the subgraph to facilitate
the efficient computation of the kernel matrix in the learning
steps.

B. Online WL Kernel

Almost all graph kernel methods fail to scale efficiently
on data streams with unlimited number of graphs due to
the following drawbacks [14]: (1) the feature space keeps
expanding with emerging subgraph patterns when new graphs
are continuously fed in; (2) the memory and runtime to find
the desired subgraph patterns become prohibitive as the size
of the graph set grows; (3) multiple scans are required in order
to calculate the global kernel matrix for all graphs seen so far.

The Nested Subtree Hashing (NSH) kernel [14] addresses
the above issues. At each iteration, NSH uses a random hash
function, h : str → N, to project the strings representing
subtree patterns onto a set of common low-dimensional feature
spaces. The function takes a string str and an integer d as
inputs, and maps str to a random integer which is no greater
than d. They prove that their NSH kernel is an unbiased
estimator of the original WL kernel. One parameter for the
NSH kernel is the hashing dimension D = {d0, · · · , dR},
where di represents the size of the subtree feature space at
the ith iteration. All subtree patterns encountered at the ith
iteration will be mapped to integers no greater than di. The
output of the NSH kernel is a multi-resolution feature vector
set {xi}Ri=0, where xi is a di-length vector and records the
occurrences of subtree patterns encountered at the ith WL test.

Algorithm 2 Online WL (OWL)
Input: D = {G1, · · · , Gj , · · ·}: a stream of graphs

D = {d0, · · · , dR}: the dimensions for hashing
Output: K: a kernel matrix

1: Initialize F = ∅
2: for t = 1, · · · , j, · · · do
3: {xi}Ri=0 = NSH(Gt, D)
4: xt = vec({xi}Ri=0)

1

5: F = F ∪ {xt}
6: for n = 1 to t− 1 do
7: xn = F(n)
8: K(Gt, Gn) = 〈xt,xn〉

One merit of the NSH algorithm is that the size of the
feature space at each iteration is bounded. In this way, we are
able to manage the emerging subtree patterns at each iteration
and map them onto a fixed-size space. We no longer need

1We define vec(·) as the vectorized operator which concatenates all the
row vectors or column vectors together to form a larger row vector or column
vector. vec({xi}Ri=1) = [x1, . . . , xR] forms a new row vector with length
d1 + · · ·+ dR, where xi is also a row vector and |xi| = di.

to find the global set of distinct subtree patterns from all the
graphs at each iteration. Based on the NSH kernel, we propose
an online version of the WL kernel, namely OWL, which can
be applied for calculating the similarity between graphs from a
data stream in an online mode. The approach is that: once we
receive a graph from the data stream, we call the NSH method
to convert that graph into a set of feature vectors in which
every feature vector records the numbers of occurrences of
subtree patterns at the corresponding iteration. The similarity
between graph Gi and all the previous graphs {G1, · · · , Gi−1}
can then be calculated by the inner products between Gi’s
feature vectors and Gj’s (j < i) feature vectors. Since every
graph is characterized by a set of feature vectors, we can store
those vectors in memory and discard the graph itself. This is
time-efficient since there is no need to fetch the original graph
again and scan it for multiple iterations to obtain the subtree
patterns. And it is also memory-efficient by limiting the bucket
size for hashing, thus to avoid unboundedly emerging subtree
patterns. Algorithm 2 shows the pseudocode of OWL.

C. Incremental Classifiers

1) Incremental SVM: Since graph kernel methods with
SVM have shown good performance when classifying static
graph-structured data, we combine an incremental SVM with
the OWL kernel, to tackle the problem of classification in
dynamic graphs. At each learning step, the support vectors
from the previous batch are retained as a compact summary
of the past data, and they are combined with the current batch
to comprise a new training set for the next step. This scheme
allows us to throw away old examples that play a negligible
role in specifying the decision boundary in classification.
When a new testing set is received, OWL is called to compute
the kernel values between the training set and the testing set.
Once the computation is done, the similarity matrix is fed into
the SVM [16] algorithm.

We consider every batch Bt and the support vectors retained
from the model learned based on the previous batch Bt−1 as
the current training set, and build a SVM classification model
using the WL kernel. It is possible that the set of support
vectors retained from Bt−1 may include some support vectors
from the batches previous to Bt−1. This is because these
support vectors are still identified as important examples when
defining the classification decision boundary on Bt−1. The
new model is then used to predict the class labels of those
central nodes or subgraphs in batch Bt+1. In this setting, we
enable the classification to be updated incrementally when
new batches of data stream in continuously at a rapid rate.
Algorithm 3 shows the pseudocode of the incremental SVM
(IncSVM) method.

2) Online Perceptron: Despite its simplicity, the perceptron
has produced good results in many real-world applications.
And it becomes especially effective when combined with
kernels due to the benefits generated by the kernel trick. A
kernel-based perceptron can be written as a kernel expansion

f(G) =
∑
i∈St

yiK(Gi, G) (3)
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Algorithm 3 Incremental SVM (IncSVM)
Input: G = {B1, · · · , Bt, · · ·}: a dynamic streaming graph

θ: the threshold for extracting subgraphs
Output: Classification of a batch Bi(i = 1, · · · , t, · · ·)

1: M0 = 0 (the initial classification model)
2: SV0 = ∅ (the initial support vector set)
3: TR0 = ∅ (the initial training set)
4: G0 = ∅ (the initial graph structure with no nodes or edges)
5: for i = 1, · · · , t, · · · do
6: GBi = ∅
7: if central node classification then
8: Gi = Gi−1 ∪Bi

9: for each central node vc in Bi do
10: GBi = GBi ∪ SubExtract(Gi, vc, θ)
11: else
12: GBi = Bi

13: compute kernel values between GBi and TRi−1
14: classify GBi using Mi−1
15: fetch the support vectors of Mi−1 as SVi−1
16: construct a training set TRi = SVi−1 ∪GBi

17: delete nodes and edges not included in TRi from Gi
18: learn a SVM classifier Mi on TRi

Algorithm 4 Online Perceptron (OnPer)
Input: G = {B1, · · · , Bt, · · ·}: a dynamic streaming graph

θ: the threshold for extracting subgraphs
Output: Classification of a batch Bi(i = 1, · · · , t, · · ·)

1: SV0 = ∅ (the initial support vector set)
2: f0 = 0 (the initial classification model)
3: G0 = ∅ (the initial graph structure with no nodes or edges)
4: for i = 1, · · · , t, · · · do
5: GBi = ∅
6: if central node classification then
7: Gi = Gi−1 ∪Bi

8: for each central node vc in Bi do
9: GBi = GBi ∪ SubExtract(Gi, vc, θ)

10: else
11: GBi = Bi

12: compute kernel values between GBi and SVi−1
13: ERRi = ∅
14: for each graph G in GBi do
15: ŷ = sgn(fi−1(G))
16: if ŷ 6= y then
17: ERRi = ERRi ∪ {G}
18: SVi = SVi−1 ∪ ERRi

19: delete nodes and edges not included in SVi from Gi
20: fi =

∑
j∈Si

yjK(Gj , ·) (rebuild perceptron)

where K(·, ·) is the kernel value between two instances and
St is the support set at time t. The prediction can be made by
ŷt = sgn(f(Gt)). If the predicted result ŷt is not equal to the
true label yt, Gt is added to the budget, that is, St = {i|ŷi 6=
yi, i < t}. Algorithm 4 lists the pseudocode of the online
perceptron combined with OWL, namely OnPer. Unlike the
incremental SVM, the online perceptron constrains memory
usage by retaining only examples that fit within the budget.

D. Window-based Incremental Classifier

Although the incremental methods will potentially utilize
less memory by discarding old data points which are not
identified as support vectors, it is still possible that the
algorithms will not scale up effectively when a large number
of support vectors tend to be retained. In our research, we
have adopted the easiest windowing scheme, i.e., fixed-size
sliding window, to maintain a limited amount of graph data
in memory. Using a sliding window enables us to keep the
amount of data that arrives recently. When the window is full,
the oldest batch of nodes or edges will be removed so that
we can maintain the data as a moderate size in memory. In
this way, we can always keep a set of instances which are
closely related to the current instances in the time line, which
makes the algorithm tolerant to potential concept drifts. At
time t when the new batch Bt arrives, the oldest instances in
the support set will be discarded if the window is full. As a
result, the corresponding nodes and their associated edges will
also be deleted from memory if they are not included in any
existing instances in the budget. However, we allow the nodes
which have been deleted to be re-inserted into the graph if
new edges in Bt refer to them. The window-based versions of
IncSVM and OnPer are referred to as WinSVM and WinPer.

V. EXPERIMENTS

We apply our incremental classification algorithms on graph
data from practical application domains. We evaluate the
effectiveness of the entropy-based subgraph extraction method
by setting different values for the entropy threshold. And we
also validate the proposed incremental learning techniques on
several real-world dynamic graph datasets by comparing them
with two of the state-of-the-art algorithms.

A. Benchmark Data

(1) DBLP Network: DBLP2 is a database containing
millions of publications in computer science. Each paper
is described by its abstract, authors, year, venue, title and
references. Similar to the work in [17], our classification task
is to predict which of the following two fields a paper belongs
to: DBDM (database and data mining: published in con-
ferences VLDB, SIGMOD, PODS, ICDE, EDBT, SIGKDD,
ICDM, DASFAA, SSDBM, CIKM, PAKDD, PKDD, SDM
and DEXA) and CVPR (computer vision and pattern recog-
nition: published in conferences CVPR, ICCV, ICIP, ICPR,
ECCV, ICME and ACM-MM). We have identified 45,270
papers published between 2000 and 2009, and their references

2http://arnetminer.org/citation
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and authors. 19,680 of them are DBDM-related (positive)
while 25,590 of them are CVPR-related (negative). The dy-
namic DBLP network is then formed by insertions of papers
and authors and the relationships between these entities. In
particular, we denote that (1) each paper ID is a central node
while each author ID is a side node; (2) if a paper P1 cites
another paper P2, there is a directed edge labeled with cites
from P1 to P2; (3) if a paper P1’s author is A1, there is
a directed edge labeled with written-by from P1 to A1. The
final graph contains about 1.2 × 105 nodes and 2.5 × 105

edges. Figure 3 plots the numbers of positive and negative
papers published in each year between 2000 and 2009. Figure
4 shows a portion of the final DBLP network.
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Fig. 3. The numbers of positive and negative examples in each year between
2000 and 2009 for DBLP dataset.

Fig. 4. A portion of the DBLP network. The shaded (central) nodes labeled
with numeric IDs represent the papers of interest, while the non-shaded ones
represent the authors. The label of the edge between two nodes indicates the
relationship between them. The rectangular box describes the content stored
in each paper node, including the publication year and the class membership.

(2) NCI Graph Stream: The National Cancer Institute
(NCI) datasets3 contain information on anticancer activities
and are frequently used as a benchmark for graph classifica-
tion [14]. In our experiment, we use five cancer datasets con-
sisting of 21,058 chemical compounds in total. Each chemical
compound is represented as a graph with nodes denoting atoms
and edges denoting bonds between atoms. Since each dataset
is a bioassay task for anticancer activity prediction, a graph
is labeled as a positive example if its chemical compound
is active against the corresponding cancer type. Figure 5
summarizes the five datasets. We concatenate these datasets
sequentially and finally get a graph dataset with 6.5 × 105

3http://pubchem.ncbi.nlm.nih.gov

nodes and 7.1× 105 edges. This data falls under the isolated-
graph classification scenario, where each graph is independent
and isolated from the others.
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Fig. 5. Positive/negative chemical compounds in each cancer dataset.

B. Baseline Methods

To evaluate the classification performance of our learning
framework, we compare the proposed methods with the fol-
lowing baseline methods.

1) Discriminative Clique Hashing (DICH): DICH [13] uses
random hashing technique to compress infinite edge space
onto a fixed-size one and applies a fast clique detection
algorithm to detect frequent discriminative cliques as features
from a graph stream, and constructs a simple classifier based
on the detected cliques. We run DICH using the following
parameters: frequent clique threshold = {0.01, 0.05, 0.1}, dis-
criminative clique threshold {0.5, 0.6, 0.7}, and size of com-
pressed edge set = {5000, 10000, 20000}. The experimental
results of DICH are reported using one of these parameters’
combinations with the highest classification accuracy.

2) Nested Subtree Hash Kernel (NSHK): NSHK [14] is an
ensemble learning framework which consists of W weighted
classifiers built on the most recent W batches of data

fE(x) =

t∑
i=t−W+1

wifi(x) (4)

where fi is a classification model learned from batch Bi and

wi =
∑

y∈{±}

Pt(y)(1−Pt(y))
2− 1

|Bt|

|Bt|∑
n=1

(0.5(1−ytnfi(xtn)))2

is the weight for fi measured by the mean square errors
related to fi and the class distribution, and Pt(y) denotes
the class distribution in Bt. Each classifier of the ensemble is
constructed using the WL kernel. During the WL isomorphism
test, hashing techniques are used to map the unlimited subtree
patterns into low-dimensional feature spaces.

Unless specified otherwise, we use the following settings for
the parameters of our methods: batch size |Bt| = {400, 800},
window size W = {6, 8, 10}, and subgraph extraction thresh-
old θ = {0.2, 0.4, 0.6, 0.8, 1.0}.

VI. EVALUATION

A. Batch Size

We first investigate the classification performance w.r.t.
different batch sizes by setting the other three parameters to

6



2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

their default values. Fig. 6 and Fig. 7 show the accuracy
values at different learning steps for the two datasets. We
find that IncSVM consistently outperforms the two baseline
methods on all the datasets. This result indicates that, by
retaining the support vectors of a SVM built from previous
batches, it is possible to learn a classifier on dynamic graphs
which can achieve higher accuracy compared to state-of-the-
art algorithms.
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Fig. 6. Average accuracy and accumulated learning time across all batches
on DBLP data w.r.t. different batch sizes.
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Fig. 7. Average accuracy and accumulated learning time across all batches
on NCI data w.r.t. different batch sizes.

B. Entropy Threshold

To investigate the impact of our entropy-based subgraph
extraction scheme on performance, we vary the subgraph
extraction threshold θ = {0.2, 0.4, 0.6, 0.8, 1.0} for extract-
ing subgraphs from DBLP, and report average classification
accuracy and system runtime of IncSVM and OnPer. We also
compare SubExtract with a naive subgraph extraction method,
namely x-edge hop. The x-edge hop method extracts all nodes
which are at most x edges away from the target central node
and then induces a subgraph surrounding that central node.
We have experimented with x = 1 and x = 2. The results are
shown in Fig. 8.

For DBLP data, the naive extraction method with x = 1
generates a much lower accuracy than the other cases because
it fails to extract more discriminative information compared to
the case of x = 2 or SubExtract. However, it takes much less
time to finish the learning process. Although the naive extrac-
tion method with x = 2 extracts more nodes and edges than
SubExtract with θ = 1.0, it has no superiority compared to
SubExtract given that its learning time is longer. This indicates
that including all information within two edges from a target
central node will not improve the classification performance
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Fig. 8. Average accuracy and accumulated learning time across all batches
on DBLP data w.r.t. different θs of SubExtract or different xs of the naive
subgraph extraction.

on DBLP data. Overall, these experimental results demonstrate
clear benefits of our subgraph extraction method in terms of
classification effectiveness and efficiency.

C. Hashing Dimensions

To show how different hashing dimension settings affect
classification error and runtime, we have chosen three
sets of dimensions: D1 = {500, 1000, 5000, 10000},
D2 = {10000, 20000, 30000, 40000}, and D3 =
{50000, 60000, 70000, 80000}. Since more distinct subtree
patterns will appear as the height of the subtrees increases,
the value of dimensions increases for each dimension setting.
Fig. 9 and Fig. 10 show the average classification accuracy
and accumulated learning time for IncSVM and OnPer on
the two datasets. An obvious finding is that the classification
accuracy with large dimension values is superior to that with
smaller dimension values for both IncSVM and OnPer. This
is because large dimension values will avoid hash collision
at a high probability while small dimension values bring
a lot of hash collisions. As a result, the low dimension
setting will cause much information loss deteriorating the
classification accuracy. However, larger dimension values will
take more time to compute the kernel values. Overall, these
plots indicate that IncSVM and OnPer can scale well and
achieve impressive classification results using a set of proper
hashing dimensions.
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Fig. 9. Average accuracy and accumulated learning time across all batches
on DBLP data w.r.t. hashing dimension settings.

D. Window Size

In this part, we investigate the classification performance
w.r.t. different window sizes for the proposed window-based
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Fig. 10. Average accuracy and accumulated learning time across all batches
on NCI data w.r.t. hashing dimension settings.

incremental learning techniques, namely WinSVM and Win-
Per. We vary the window size W = {6, 8, 10} in our
experiments, and also compare the classification performance
of the window-based methods to IncSVM and OnPer (i.e.,
W = ∞). The average accuracy and accumulated learning
time are plotted in Fig. 11 and Fig. 12. Intuitively, the
classification accuracy will increase at the expense of more
space caused by enlarging the window size. This is mainly
because more training examples will be retained inside a
larger window, which will reduce the generalization error of
the classifier. On the other hand, enlarging a window size
will increase runtime because it will consume more time for
WinSVM/WinPer to train a classifier. Overall, the results show
that WinSVM/WinPer can achieve impressive classification
performance with a proper window size.
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Fig. 11. Average accuracy and accumulated learning time across all batches
on DBLP data w.r.t. window sizes.
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Fig. 12. Average accuracy and accumulated learning time across all batches
on NCI data w.r.t. window sizes.

VII. CONCLUSION

We present a novel framework for studying the problem
of classification in dynamic streaming graphs. The framework

combines two incremental kernel-based methods and an online
graph kernel to train a classification model and constantly up-
date it by preserving the support vectors at each learning step.
Additionally, a sliding window strategy is incorporated into
our framework in order to further reduce memory usage and
learning time. The entropy-based subgraph extraction method
is designed to discover informative neighbor information and
discard irrelevant information when inducing a subgraph for a
central entity to be classified.

For future work, we will investigate the pros and cons of our
incremental methods by conducting comparisons with state-of-
the-art algorithms on more real-world dynamic networks, and
explore the theoretical relationship between the user-defined
variables (i.e., window size, edge extraction threshold) and
the classification performance of the proposed algorithms. We
would also like to investigate how to extend the proposed
methods to study the problem of supervised learning on
dynamic graphs with insertions, deletions and modifications
of nodes/edges.
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