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Abstract

The goal of the MavHome (Managing An Intelligent Versatile Home) project is
to create a home that acts as a rational agent. The agent’s goal is to maximize inhab-
itant comfort and minimize operation cost. In this paper, we introduce the MavHome
project and its underlying architecture. The role of prediction algorithms within the
architecture is discussed, and a meta-predictor which combines the strengths of mul-
tiple approaches to inhabitant action prediction is presented. We demonstrate the

effectiveness of these algorithms on sample smart home data.

1 Introduction

The MavHome smart home project is a multi-disciplinary research project at the University
of Texas at Arlington focused on the creation of an intelligent and versatile home environment
[2]. Our goal is to create a home that acts as a rational agent, perceiving the state of the
home through sensors and acting upon the environment through effectors (in this case, device
controllers). The agent acts in a way to maximize its goal, which is a function that maximizes
comfort and productivity of its inhabitants and minimizes operation cost. In order to achieve
these goals, the house must be able to predict, reason about, and adapt to its inhabitants.
MavHome operations can be characterized by the following scenario. At 6:45am, MavHome

turns up the heat because it has learned that the home needs 15 minutes to warm to optimal
temperature for waking. The alarm goes off at 7:00, which signals the bedroom light to go
on as well as the coffee maker in the kitchen. Bob steps into the bathroom and turns on
the light. MavHome records this interaction, displays the morning news on the bathroom

video screen, and turns on the shower. While Bob is shaving MavHome senses that Bob



is two pounds over his ideal weight and adjusts Bob’s suggested menu. When Bob finishes
grooming, the bathroom light turns off while the kitchen light and menu/schedule display
turns on, and the news program moves to the kitchen screen. During breakfast, Bob notices
that the floor is dirty and requests the janitor robot to clean the house. When Bob leaves
for work, MavHome secures the home, and starts the lawn sprinklers despite knowing the
70% predicted chance of rain.

Later that morning, a rainstorm hits the area which further waters the lawn. Due to a
nearby lightning strike, the VCR experiences a power surge and breaks down while taping
Bob’s favorite show. MavHome places a repair request and informs Bob at work of the event.
Because the refrigerator is low on milk and cheese, MavHome places a grocery order to arrive
just before Bob comes home. When Bob arrives home, his grocery order has arrived and the
hot tub is waiting for him.

A number of capabilities are required for this scenario to occur. For a house to be able
to record inhabitant interaction and trigger sequences of events such as the bedroom light /
coffee maker sequence, advances in active database techniques are needed. Machine learning
techniques are required to predict inhabitant movement patterns and typical activities, and
to use that information in automating house decisions and optimizing inhabitant comfort,
security, and productivity. In order for Bob’s news program to follow him between rooms
and for MavHome to find him away from the home, multimedia and mobile computing
capabilities must be present. As can be observed from the scenario, MavHome automates
the control of numerous devices within the home. To scale to this size problem, the MavHome
agent can be decomposed into lower-level agents responsible for subtasks within the home,
including robot and sensor agents, and MavHome can dynamically reorganize the hierarchy
to maximize performance.

The desired smart home capabilities must be organized into an architecture that seam-
lessly connects these components while allowing improvement in any of the underlying tech-
nologies. In this paper we present such an architecture that supports the MavHome smart
home project, and describe the role of the Predict? meta-predictor algorithm within this
architecture. We validate the underlying algorithms on synthetic and real captured smart

home data.



2 MavHome Architecture

The MavHome architecture is a hierarchy of rational agents which cooperate to meet the
goals of the overall home. Figure 1 shows the architecture of a MavHome agent. The tech-
nologies within each agent are separated into four cooperating layers. The Decision layer
selects actions for the agent to execute based on information supplied from the other lay-
ers through the Information layer. The Information layer gathers, stores, and generates
knowledge useful for decision making. The Communication layer facilitates the communi-
cation of information, requests, and queries between agents. The Physical layer contains the
hardware within the house including individual devices, transducers, and network hardware.
Because the architecture is hierarchical, the Physical layer may actually represent another
agent in the hierarchy.

Perception is a bottom-up process. Sensors monitor the environment (e.g., lawn moisture
level) and, if necessary, transmit the information to another agent through the Communi-
cation layer. The database records the information in the Information layer, updates its
learned concepts and predictions accordingly, and alerts the Decision layer of the presence
of new data. During action execution, information flows top down. The Decision layer se-
lects an action (e.g., run the sprinklers) and relates the decision to the Information layer.
After updating the database, the Communication layer routes the action to the appropriate
effector to execute. If the effector is actually another agent, the agent receives the command
through its effector as perceived information and must decide upon the best method of exe-
cuting the desired action. A specialized interface agent provides interaction capabilities with
users and with external resources such as the Internet. Agents can communicate with other
agents using the hierarchical flow of control and information shown in Figure 1.

Several smart home-related projects have been initiated by research labs. The Georgia
Tech Aware Home [5] and the MIT Intelligent Room [9] include an impressive array of sensors
to determine user locations and activities within an actual house. The Neural Network
House at the University of Colorado Boulder [6] employs a neural network to control heating,
lighting, ventilation, and water temperature in a manner that minimizes operating cost. The

interest of industrial labs in smart home and networked appliance technologies is evidenced
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Figure 2: ResiSim simulator for the MavHome environment.

by the creation of Jini, Bluetooth, and SIP (Session Initiation Protocol) standards, and by
supporting technologies such as Xerox PARC’s Zombie Board, Microsoft’s Home project,
the Cisco Internet Home, and the Verizon Connected Family project. MavHome is unique
in combining technologies from artificial intelligence, machine learning, databases, mobile
computing, robotics, and multimedia computing to create an entire smart home that acts as

a rational agent.

3 MavHome Implementation

The MavHome architecture has been implemented using a CORBA interface between soft-
ware components and powerline control for most electric devices. In the current MavHome
lab environment, students register their presence and MavHome begins collecting data on
their activities. MavHome features include database collection of activities, prediction of in-
habitant actions, identification of inhabitants from observed activities, mobility prediction,
robotic assistants, multimedia adaptability, and intelligent control of the house. We also de-
signing a 3D simulator of the environment, shown in Figure 2. Using the simulator, visitors
at a remote location can monitor the status of the environment. Changing the status of the
device in the simulator will change the status of the device in the physical environment as
well.

One challenge is the automation of devices that are not controllable in their natural

form. Inhabitants of MavHome want to be able to control the amount of natural light



Figure 3: Automated blinds in MavHome environment.

through automation of mini-blinds. However, most blinds are not designed for such control.
MavHome’s controller hardware is designed to let the house turn single or multiple sets
of mini-blinds clockwise or counter-clockwise a specific number of turns. The rod rotation
hardware is built using stepper motors from 5 1/4” floppy drives, and a parallel port provides
the interface between the MavHome computer and the hardware circuitry. A 4-16 decoder
/ de-multiplexer is used for selection and an inverter is used to convert from negative to
positive logic. Opto-isolaters and transistors are incorporated to meet the power demands,
and a Darlington driver is connected to four data bits of the parallel port to switch current
to the coils in the stepper motor. CAT-5 cable transfers signals to the motor. The software
uses threads to process multiple blinds independently. Because the software interface uses
CORBA, these blinds can be automated by MavHome in the way any other device can be
controlled by the intelligent agent. Figure 3 shows the blinds in the MavHome environment
after being partially opened by the home agent. Similar approaches can be taken to automate

desired features of the house with optimal modularity.



4 Inhabitant Action Prediction

Automating devices within a home is not sufficient to label it an intelligent environment. An
intelligent environment must be able to acquire and apply knowledge about its inhabitants
in order to adapt to the inhabitants and meet the goals of comfort and efficiency. These
capabilities rely upon effective prediction algorithms. Given a prediction of inhabitant ac-
tivities, MavHome can decide whether or not to automate the activity or even improve upon
the standard activity sequence to meet the house goals.

Specifically, the MavHome intelligent agent needs to predict the inhabitant’s next action
in order to automate the routine and repetitive tasks for the inhabitant. Patterns observed
in past inhabitant activities can be used to aid the agent decisions for controlling devices
throughout the home. In this section we describe this role of prediction in the MavHome ar-
chitecture and present a variety of prediction algorithms suitable for that task and controlled
by the Predict? meta-predictor.

Prediction is a heavily researched area in artificial intelligence. The ONISI system [3]
and the Korvemaker and Greiner UNIX command prediction algorithm [4] employ pattern
matching. IDHYS [7] represents an approach to action prediction based on the Candidate

Elimination algorithm.

4.1 Smart Home Inhabitant Prediction (SHIP)

Our SHIP algorithm matches the most recent sequence of events with sequences in collected
histories. In the SHIP algorithm, the inhabitant commands are encapsulated using actions
and matches. When the inhabitant issues a command to a device, it is recorded as an
action in the inhabitant history. A match identifies a sequence in history that matches the
immediate event history (a sequence ending with the most recent event). A match queue is
maintained to ensure a match time that is close to linear.

The algorithm SHIP consists of two steps. First, the match queue is updated when a
new action is recorded. At time ¢ in state s we compute [;(s,a), the length of the longest
sequences that end with action a in state s and match the history sequence immediately prior

to time ¢. In addition, we define a frequency measure f(s,a) which represents the number



of times the action a has been taken from the current state. In the second step, the matches
in the queue are evaluated based on the match length and frequency. SHIP ranks matches
based on a combination of normalized match frequency and match length, according to the

equation
li(s,a) f(s,a)
aEtlt(S, a;) T 1-a) ef(s,ai)

SHIP returns the action a that is indicated by the match (s,a) with the greatest R,(s,a)

Ri(s,a) =

value as its prediction.

To allow for gradual changes in the inhabitant patterns over time, the value of a matched
pattern can be multiplied by a user-specified decay factor. The user also has the flexibility of
weighting the match length and match frequency factors that affect a match value. Because
an inhabitant pattern is likely to contain small variations between occurrences, an inexact
match is employed to find sequence matches.

SHIP has been tested using synthetic smart home data and on real data collected by
students using X10 controllers in their home. The synthetic data generator allows a variable
number of devices and any number of scenarios, each of which contains actions that execute
in a partially-ordered or totally-ordered sequence, with probabilistic ranges of execution
times.

In these experiments, SHIP yields a predictive accuracy as high as 53.4% on the real data
and 94.4% on the synthetic data. SHIP’s performance on the real data climbs to over 80%
if we consider the top three matches identified by SHIP.

SHIP is one of the prediction algorithms used by MavHome. The advantages of this algo-
rithm are its design simplicity and ability to adapt to changing patterns. A key disadvantage
of the algorithm is the fact that the entire action history must be stored and processed off
line to return a prediction. This is not practical for large prediction tasks over a long period
of time. In addition, the algorithm is currently designed to perform to predict the next event

in a sequence and not the time at which the event will occur.



5 Prediction Using Active LeZi (ALZ)

Our second prediction algorithm, Active LeZi, uses information theory principles to pro-
cess historical action sequences. Because we characterize inhabitant-device interaction as a
Markov chain of events, we can utilize a sequential prediction scheme that has been shown
to be optimal in terms of predictive accuracy for this type of prediction problem. Because
ALZ is based on LZ78 data compression, which is an incremental parsing algorithm, it is
also an online algorithm.

The LZ78 text compression algorithm incrementally parses an input string si, So, ..., s;
into ¢(7) substrings wy, wa, w.(;) such that for all j > 0, the prefix of the substring w; is equal
to some w; for 1 < ¢ < j. The algorithm maintains statistics for all contexts of each phrase
[10]. This information is used to compress and reconstruct text strings in an online fashion.

Active LeZi enhances the original LZ78 algorithm by recapturing information that would
be lost across phrase boundaries. To do this, we maintain a variable-length window of
processed symbols. The length of this window is equal to the length of the longest phrase
seen so far. We gather statistics on all of the possible contexts seen based on this information.
The resulting algorithm also gains a better rate of convergence to optimal predictive accuracy.

To perform prediction, ALZ calculates the probability of each action occurring in the
parsed sequence, and predicts the action with the highest probability. To enhance prediction,
ALZ incorporates ideas from the Prediction by Partial Match (PPM) family of predictors.
This has been used to great effect by Bhattacharya, et al. [1] in a predictive framework based
on LZ78. PPM algorithms consider different order Markov models to build a probability
distribution by weighing the different order models appropriately. ALZ starts by building
an order-k Markov model, then employs the PPM strategy to gather information from all
lower-order models to determine the probability value of the next symbol.

Active LeZi has been tested on synthetic data generated for 30 days representing action
sequences for weekday and weekend scenarios. The algorithm yielded 87% accuracy over this
test data.

The ability of Active LeZi to use information from different order models is a strength of

this approach, as is the ability to process information in an incremental manner. However,



this algorithm does not incorporate actual event times into the prediction. For predictions

that require this information the TMM algorithm is useful.

6 Prediction Using a Task-based Markov Model (TMM)

The TMM algorithm identifies high-level tasks in action sequences to help direct the creation
of a Markov Model for action prediction. A simple Markov Model can be generated from
collected action sequences and used to predict the next action given the current state of the
agent. The state information captures the individual device states as well as the time of day
and action date. However, additional information about the context in which activities were
performed may be useful in further directing the prediction.

To this end, TMM identifies high-level tasks from the input action sequences. The
sequence of events, or actions, is first partitioned into individual tasks. A change in tasks is
identified by gaps in activities and changes in location of the actions being performed.

Second, a k-means clustering algorithm is used to cluster the partitioned task sequences
into sets of similar tasks. Task meta-features are supplied to the clusterer that include the
length in time and length in number of actions of the task sequence, the number of devices
used in the task, and the number of locations covered by the task. The output of the
clustering algorithm is a collection of task sets, each of which can be labeled as a separate
task type. The task information can be used to refine the initial Markov Model by seeding
probabilities of transitions between states based on their co-membership in the task cluster.

The TMM algorithm was tested on synthetic data generated for 30 days, using separate
scenarios for weekdays and weekends. The algorithm generated 74% predictive accuracy on
this data. Note that while the predictive accuracy is lower than for SHIP and Active LeZi,
the complexity of the problem is increased because of the reasoning about time as well as

action sequences.
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7 Improving Prediction with Episode Discovery (ED)

The SHIP, Active LeZi, and TMM algorithms are useful in identifying likely activities of
a smart home inhabitant. This information can be used to automate interactions with the
home, removing the need for manual control of devices. A wrong prediction, however, can
be annoying or detrimental if the inhabitant must reverse the action executed by the house
or repair damage caused by a faulty decision.

Instead of identifying and automating each inhabitant pattern, we describe here a data
mining algorithm, called Episode Discovery (ED), that identifies significant episodes within
an inhabitant event history. A significant episode can be viewed as a related set of device
events that may be ordered, partially ordered, or unordered. A significant episode occurs at
some regular interval or in response to other significant episodes called triggers. The goal of
the intelligence framework in our problem domain is to mine the input stream in order to
discover the significant episodes. Actions can then be automated based on the significance
of the discovered pattern as well as the predictive accuracy of the next event.

Our approach is based on the work of Srikant and Agrawal [8] for mining sequential pat-
terns from time-ordered transactions. Our home automation problem differs from previous
research in that the input sequence does not consist of explicit transactions, but merely in-
teractions with home devices. Unlike the previous sequence mining problem, the significant
episodes in an intelligent environment may be ordered or unordered. In addition, many of
the episodes in our environment will occur daily or weekly, and need to be recognized for
this regularity. In our MavHome scenario, the following device activity sequences occur on

a regular basis and should be detected by our algorithm:

e HeatOn (daily)

AlarmOn, AlarmOff, BedroomLightOn, CoffeeMakerOn, BathRoomLightOn, Bath-
RoomVideoOn, ShowerOn, HeatOff (daily)

BedroomLight Off, BathRoomLight Off, BathRoomVideoOff, ShowerOff, KitchenLightOn,
KitchenScreenOn (daily)

CoffeeMakerOff, KitchenLightOff, KitchenScreenOff (daily)

HotTubOn (daily)

11



HotTubOff (daily)

SprinklerOn (weekly)

SprinklerOff (weekly)
e VCROn (weekly)

VCROA (weekly)

e OrderGroceries (weekly)

Other activities, such as the robot activation, would not be identified by ED as significant
because they do not occur with any predictable regularity.

To mine the data, the input sequence is partitioned into transaction-like collections of
events by sliding a window over the event history and viewing the collection of events within
the window as an ordered or unordered set. The minimum description length (MDL) prin-
ciple is used to evaluate potential sequences. The MDL principle targets patterns that can
be used to minimize the description length of the database by replacing each instance of
the pattern with a pointer to the pattern definition. This evaluation measure thus iden-
tifies patterns that balance frequency with pattern length. As a result, automating these
sequences will significantly reduce the amount of necessary interaction between an inhabitant
and the environment. Another feature of ED is that patterns are evaluated for day, week,
and month regularity as well as MDL value. Significant episodes will then be selected based
on the overall evaluation measure, and used as the basis for activity prediction and home
automation.

To improve the quality of predictions, action sequences are first filtered using ED. If
a sequence is considered significant, then predictions can be made for events within the
sequence window. We hypothesize that predictive accuracy will improve for any prediction
algorithm that uses ED to filter the prediction set.

An online incremental version of ED has been implemented using C++. We tested our
approach on a synthetic data set of 838 event occurrences generated from twenty-six unique
possible events. Sixteen of the events are part of significant episodes, eight are noise, and
two are both noise and part of a significant episode. ED identified nine of the significant

episodes, which varied in length from one to five events. Four episodes were totally-ordered
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daily sequences, four were unordered daily occurrences, and one was a totally-ordered weekly
scenario. We used ED as a filter for a simple sequence-based prediction algorithm based on
frequency of (state, action) pairs.

The original prediction algorithm achieved 47% predictive accuracy. Enhancing the algo-
rithm with ED, the predictive accuracy was 100%. These results show that ED can be used

to aid in the automation of device interactions, as described by our MavHome scenario.

8 Predict?

Asis evident from our discussions, there are many approaches to prediction in the context of a
smart home. The algorithms offer unique strengths and weaknesses, and no single algorithm
appears to be best for all situations. Because we want to draw from all of the strengths, our
main MavHome prediction algorithm is actually a meta-predictor, called Predict?.

The Predict? algorithm uses a backpropagation neural network to learn a confidence value
for each prediction algorithm based on the historical data gathered so far and accuracy of
the algorithm on this data, along with meta features such as the amount of training data, the
number of devices in the environment, the number of inhabitants in the home, and whether
the current state is part of an ED-tagged significant episode. A voting scheme based on
weighted votes from each individual prediction algorithm algorithm is used to generate the
final prediction. A CORBA interface between Predict? and the MavHome architecture will

allow the MavHome agent to draw upon the prediction when needed.

9 Conclusions

In this paper we have presented the MavHome smart home architecture, which allows a smart
home (or other intelligent environment) to act as a rational agent. As a rational agent, the
home receives input from sensors and selects an appropriate action which is executed through
the use of effectors. This architecture allows the integration of research in machine learning,
databases, mobile computing, robotics, and multimedia computing that is essential for smart

home development.
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As part of the MavHome architecture, several prediction algorithms are introduced that
play critical roles in an adaptive and automated environment such as MavHome. The first
prediction algorithm, SHIP, uses sequence matching with inexact allowances and decay fac-
tors to determine the most likely next inhabitant interaction with the home. The second
algorithm, Active LeZi, enhances the LZ78 text compression algorithm to improve predic-
tive accuracy and adapts the algorithm for probabilistic prediction of action sequences. The
TMM algorithm identifies high-level tasks to aid in predicting actions with timing informa-
tion. Finally, the ED algorithm mines the data using the principle of minimum descrip-
tionlength to determine which episodes are significant enough to warrant prediction and
automation. Results from synthetic and real collected smart home data indicate that the
predictive accuracy is high even in the presence of many possible activities. The Predict?
algorithm allows each of these prediction approaches to play a role in predicting inhabitant
activity within MavHome.

We have demonstrated the effectiveness of these algorithms on collected data. The next
step for this effort will be to implement the architecture in the context of actual smart
environments. In these contexts we will show the effectiveness of the MavHome architecture
operating as a rational agent, and its ability to improve the lifestyle of inhabitants in a

variety of intelligent environments.
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