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Abstract  

An intelligent home is likely in the near future. 
An important ingredient in an intelligent 
environment such as a home is prediction – of 
the next low-level action, the next location, and 
the next high-level task that an inhabitant is 
likely to perform. In this paper we model 
inhabitant actions as states in a simple Markov 
model. We introduce an enhancement, the Task-
based Markov model (TMM) method. TMM 
discovers high-level inhabitant tasks using the 
unlabeled data supplied. We investigate 
clustering of actions to identify tasks, and 
integrate clusters into a hidden Markov model 
that predicts the next inhabitant action. We 
validate our approach and observe that for 
simulated data we achieve good accuracy using 
both the simple Markov model and the TMM, 
whereas on real data we see that simple Markov 
models outperform the TMM. We also perform 
an analysis of the performance of the HMM in 
the framework of the TMM when diverse 
patterns are introduced into the data. 

1.  Introduction 

We envision that a home capable of being intelligent is a 
very likely possibility. A home that is capable of making 
decisions will provide a degree of autonomy not currently 
found in home environments. Individuals in such a home 
will find the home adapting to their needs and living 
styles while preserving comfort. In automating the home, 
many of the inhabitant’s desired home interactions can be 
autonomously performed without the inhabitant or user 
intervening. Automation will provide a start towards the 
home adapting to the inhabitant’s needs.  

The Mavhome Smart Home research project (Cook et al., 
2003; Das et al., 2002) focuses on the creation of an 
intelligent home that behaves as a rational agent. An 
important component is the ability to make decisions 
based on predicted activities. Values that can be predicted 
include the usage pattern of devices in the home, the 
movement patterns of the inhabitants and typical activities 
of the inhabitants. In this paper we model part of the 
prediction problem – predicting device usage in a home. 

In a home, a user interacts with a variety of devices, and 
we term each such interaction as an action.  For example, 
switching on the kitchen light at a given time is an action 
and can be represented as the string ‘10/25/2002 8:15:31 
PM Kitchen Light D1 ON’, where D1 is the device 
identifier, ‘Light’ is the device type, ‘Kitchen’ represents 
the location of the device, and ‘ON’ is the resulting status 
of the device. This interaction is time-stamped with the 
time and date. An inhabitant such as Sira can be 
characterized by his patterns which consist of a number of 
high-level tasks broken down into individual actions. For 
example, the task of ‘Getting to Work’ consists of turning 
on the bathroom light at 7am, turning on and later off the 
coffee maker in the kitchen, turning off the bathroom light 
at 7:30am, then turning on the kitchen light. After Sira has 
breakfast, the garage door is opened while the kitchen 
light is turned off and the door is closed after he leaves. In 
this case we know the task and the corresponding actions, 
but the observation data consists of just the low-level 
actions. Our goal is to learn which sets of actions 
constitute a well-defined task and use this information to 
make predictions. 

Work in the area of prediction has been applied to other 
problems, such as predicting UNIX commands (Davison 
& Hirsh, 1998; Gorniak & Poole, 2000). The prediction 
problem is difficult for a home scenario where there are 
multiple inhabitants performing multiple tasks at the same 
or different times. As a first step, we investigate a portion 
of this problem: predicting a single inhabitant's actions 
and tasks. 

Traditional machine learning techniques (e.g., decision 
trees, memory-based learners, etc.) that are employed for 
classification face difficulty in using historic information 
to make sequential predictions. Markov models offer an 
alternative representation that implicitly encodes a portion 
of the history. The distinguishing feature of our approach 
is that we identify the activity or task that encompasses a 
set of actions. We hypothesize that recognizing the task 
will help better understand the actions that are part of it, 
and we expect to better predict the inhabitant's next task 
and thus the next action.  For example, if the home 
recognizes that Sira is making breakfast, it will better 
predict his next action as turning on the coffee maker 
given that the last action was turning off the bathroom 
light. This paper builds on our previous work in which we 



introduce the application of TMM to smart home tasks 
(Cook et al., 2003; Rao & Cook, 2003). 

The remainder of the paper presents our work. We first 
formalize the problem and explain application of a simple 
Markov model.  We then explain a method of partitioning 
actions into sequences, clustering the sequences into 
tasks, and integrating task information into a hidden 
Markov model.  Following this, we discuss generation of 
the simulated data, the collection of real data and the 
validation of our approach. Finally, we conclude with 
some directions for future work. 

2.  Problem Description and Modeling of Actions 

Given actions A1, A2, …, AN we want to predict the next 
action, AN+1. An action Ai describes an event in a home. 
In the example of an action string provided earlier, 
“10/25/2002 8:15:31 PM Kitchen Light D1 ON”, the 
action string consists of many features or fields: date, 
time, location, device type, device identifier and device 
status. In this work we consider devices that have only 
binary states – ON and OFF. Also, the locations and the 
locations of devices in a home are assumed to be fixed 
and do not change over a period of time. 

2.1  Markov Models 

Our motivation to approach the prediction problem within 
the framework of Markov models is prompted by the need 
to learn the pattern of user actions without storing large 
amounts of history. As a first step we model the entire 
sequence of inhabitant actions as a simple Markov model, 
where each state corresponds to one or more actions. For 
example, consider the action A11: 03/31/2003 8:17:31 PM 
Kitchen Light D1 ON which can be represented as a state 
in the model. To create a unique state for each possible 
action, that is a device manipulation with the equivalent 
time stamp, would result in an unreasonably large model.  
We construct smaller models by discretizing the time of 
the action and ignoring the date, in effect merging similar 
states together. Consider another action A12: 04/02/2003 
8:11:46 PM Kitchen Light D1 ON. The actions are 
composed of fields that we represent as features in our 
state representation:  date, time, location, device 
description (e.g., Light), device id, and device status (e.g., 
ON). Observe that A11 and A12 differ only in the time and 
date features. Given two actions we can calculate the 
difference in the time of the two actions. If the difference 
in time between the actions is ‘minimal’, the 
corresponding states can be merged. We say the 
difference is ‘minimal’ or ‘negligible’ if this difference is 
within the allowable time. 

When each new action Ai is processed, a check is made to 
see if the action is ‘close enough’ to an existing model 
state to merge with that state.  An action is close enough 
to an existing model state if they both refer to the same 
device and location but differ in the time and this time 
difference is ‘negligible’. The term ‘negligible’ can be 

fixed through use of different values and utilizing the 
performance results of these values. If not, a new state is 
created with action representative Ai and transitions are 
created from the previous action in the sequence to Ai.  
The values of each transition reflect the relative frequency 
of the transition.  Thus, discretizing the time helps 
achieve a moderate number of states. If each action were 
to be considered as a single state, there would be a great 
number of states requiring a tremendous amount of 
training data to achieve good prediction performance.  

Once the simple Markov model is constructed, it is used 
for prediction of actions. A prediction can be generated by 
matching the current state with a state in the model and 
predicting the action that corresponds to the outgoing 
transition from that state with the greatest probability. 

3.  Partitioning Actions and Clustering into Tasks 

In the previous section we mention how a simple Markov 
model was built and used for the purpose of predicting 
user actions. Sometimes the simple Markov model may 
not yield useful predictions. This can be seen when there 
is an equal likelihood of a transition to many states from a 
particular state. This can be caused if there is too much 
noise in the data or there exists some randomness in the 
inhabitant’s actions. In this section and the next we 
describe enhancements to our model that we use to 
predict actions. 

We hypothesize that the predictive accuracy can be 
improved by incorporating abstract task information into 
the model. If we can identify the actions that comprise a 
task, then we can identify the current task and generate 
more accurate transition probabilities for the 
corresponding task. 

3.1  Partitioning Actions using Heuristics 

Actions in smart home log data are not labeled with the 
corresponding high-level task, so we propose to discover 
these tasks using unsupervised learning.  The first step is 
to partition the action sequence into subsequences that are 
likely to be part of the same task. 

Given actions A1, A2, …, AN we can divide these into 
disjoint groups G1, G2, …, GP, where each group consists 
of a set of actions AI, …, AI+J and for simplicity every 
action is part of only one group. Note that each group 
maintains the sequence information and hence all actions 
within a group are ordered with respect to the time and 
date information. 

The partitioning step extracts examples of activities. We 
attempt to separate the action sequences into groups that 
are likely to act as examples of activities. Given these 
examples we can cluster similar examples together and 
represent each of the similar examples by a single 
instance – a task. Since we have no prior information 
about the actions themselves, we need to use heuristics to 
group actions such that each group is an instance of a 



task. Some of the heuristics that can be employed are ones 
that use the location of the device, the time interval 
between actions, the status of devices and the number of 
actions since the last grouping was formed. 

We separate an action sequence Ax, …, Ay into groups Ax, 
…, Az and Az+1, …, Ay using any of the following rules: 

1) The time difference between Az and Az+1 is > ‘P’ 
minutes. 

2) There is a difference in the device location (such 
as another room) between the Az and Az+1. 

3) The number of actions in the group is > ‘n’. 
We allow for the use of these three rules either 
independently or in combination with the other rules. The 
result of the partitioning step is a set of groups or 
individual tasks. The groups so obtained are now ready to 
be clustered into sets of similar tasks. 

3.2  Clustering Partitions into Abstract Tasks 

Given the different groups from the partitioning process, 
we have to cluster similar groups together to form abstract 
task classes. As a first step, we extract meta-features 
describing the group as a whole. Information that we can 
collect from each group includes the number of actions in 
the group, the starting time and time duration of this 
group, the locations visited and devices acted upon in the 
group. This information is stored as a partition PI and thus 
we have partitions P1, P2, …, PP. The partitions are now 
supplied to the clustering algorithm. 

Clustering is used to group instances that are similar to 
each other and the individual cluster represents an abstract 
task definition. A cluster consists of these similar 
instances, and we can consider the mean of the cluster 
distribution as the cluster representative, while the 
variance represents the disparity in the grouping of the 
cluster instances. Because we require clusters that group 
similar instances and because of the inherent simplicity of 
the partitional clustering algorithms, we apply k-means 
clustering to partitions P1, P2, …, PP. 

To perform clustering, we utilize LNKnet (Kukolich & 
Lippmann, 1995), from MIT Lincoln Labs.  The results 
are parsed to extract the cluster centroids and variance 
values. We average the cluster centroids and variances 
over values generated from ten separate runs to promote 
generality of the results. For certain data sets we find that 
the clustering results show the tasks clearly. As the data is 
more disparate we find the clusters less reflect the true 
tasks. The resulting clusters represent the abstract 
inhabitant tasks. In the context of hidden Markov models 
(HMMs) these clusters can be used as hidden states, and 
the HMMs can be used in the TMM framework to 
perform action prediction. 

4.  Hidden Markov Models 

Hidden Markov models have been used extensively in a 
variety of environments that include speech recognition 

(Rabiner, 1989), information extraction (Seymore, 
McCallum, & Rosenfeld, 1999) and recognizing human 
activities (Luhr et al., 2003). HMMs can be either hand 
built (Freitag & McCallum, 1999) or constructed 
assuming a fixed-model structure that is subsequently 
trained using the Baum-Welch algorithm (Baum, 1972). 
To our knowledge HMMs have not been used for 
prediction of tasks, and our use of HMMs to predict 
actions and tasks is a new direction of research. 

In this section we discuss how clusters obtained from the 
partitioning and clustering process are used in a hidden 
Markov model, how HMM parameters are learned, and 
the use of HMM within the framework of our task-based 
Markov model for predicting actions. 

4.1  HMM Terminology 

The elements of a HMM can be defined formally. A 
HMM is characterized by the following (Rabiner, 1989): 
1) N, the number of hidden states in the model: We denote 
these individual states as S = {S1, S2, …, SN} and we 
denote the state at time t as qt. 
2) M, the number of distinct observation symbols per state 
or the discrete alphabet size: The individual symbols are 
denoted as V = {v1, v2, …, vM}. 
3) A, the state transition probability distribution, A = {aij}, 
where aij = P [qt+1 = Sj | qt = Si],  1 � i, j � N 
4) B, the observation symbol probability distribution in 
state j, B = {bj(k)}, where 
bj(k) = P [vk at t | qt = Sj],  1 � j � N and 1 � k � M 
5) ð, the initial state probability distribution, ð = { ð i}, 
where ði = P [q1 = Si],  1 � i � N 
6) O, the observation symbol vector or the sequence of 
observations, O=O1O2 … OT, where each observation Ot 
is one of the symbols from V, and T is the number of 
observations in the sequence. 

In our problem, N represents the number of clusters, and 
vi is a symbol representing a single discretized action. We 
want a moderate set of symbols that represent the entire 
training action instances. The number of such symbols is 
the value M. T is the size of our training data, and O is a 
vector containing the modified form of the actions 
represented as symbols. A, also known as the transition 
matrix, represents the transition probability distribution 
between hidden states. B, also known as the confusion 
matrix, represents the probability distribution of 
observing a particular symbol (a modified form of an 
action) upon arriving at one of the N states. The 
distribution ð gives the likelihood of each state 
representing the initial state. 

4.2  TMM framework 

We use the clusters obtained from the clustering step as 
hidden states in a HMM. The hidden states thus have the 
same features as that of the clusters; namely, the number 
of actions in the cluster, the start time of actions in the 
cluster, the time duration of the set of actions in the 



cluster, the location of the devices and the device 
identifiers. Construction of a HMM needs more than just 
the information about the hidden states. We need to have 
the matrices and the vectors defined before we can 
proceed with using the HMM for prediction.  

Given that the actions repeat over time, we require a 
model that is ergodic. Since our model has only N and M 
defined we need to learn the three probability measures A, 
B and ð together known as the triple ë, written as ë = (A, 
B, ð) in compact form. We use the Baum-Welch 
algorithm to train the model. The values of the triple are 
initialized randomly, uniformly or through a seeding 
procedure (these are discussed in the next section), and 
the training is essentially an expectation-modification 
(EM) procedure. Following the training of the model, the 
forward algorithm (Rabiner 1989) is used to calculate the 
probability of an observation sequence given the triple.  

Typically, the forward algorithm is used to evaluate an 
observation sequence with respect to different HMMs and 
the model yielding the greatest probability is the model 
that best explains the sequence. However, we consider a 
different evaluation mechanism where we have a single 
model and many possible observation sequences. The 
observation sequence that best fits this model is used for 
prediction of the next action. This is accomplished as 
follows: given a model ë and the observation sequence 
Oi+1Oi+2 …Oi+k, we need to predict Oi+k+1. Symbols 
Oi+1Oi+2 …Oi+k represent the observed recent history of 
actions. Since the predicted symbol can be any one of the 
M alphabet symbols, we have M possible sequences with 
the first k symbols in common but different last symbols.  

The sequence that yields the greatest probability value for 
the model offers symbol k+1 as the predicted next action. 
Since the probabilities associated with the model differ 
only slightly, we consider the top N predictions as valid 
predictions, where N is a configurable value. The 
probability distributions of the top N predictions will be 
fed to a decision maker, which will learn over time how 
the top N predictions are to be considered. Alternatively a 
user can be queried regarding the predictions suggested. 
Since this method requires remembering k symbols to 
make the next prediction, we need to remember at least k 
actions. But remembering the entire observation sequence 
can be prohibitive while making prediction for the next 
action, hence we have a sliding window that keeps only 
the last k symbols or actions, where k is a configurable 
value. 

4.3  Initialization of Parameters 

The last section mentions that the parameters of the HMM 
need to be initialized before using the Baum-Welch 
method to optimize the parameters. The initialization of 
the parameters can be done in one of three ways. The 
three approaches are: random initialization, uniform 
initialization and initialization through the process of 
seeding. Previously (Rao & Cook, 2003) we have shown 
the results when the confusion matrix is initialized using 

the random method. In this paper we show results when 
the initialization of the confusion matrix is done through a 
process of seeding while the transition matrix and the 
initial state vector are initialized using the different 
techniques. Random initialization is done with a different 
seed each time so that we obtain different probability 
measure values. This does lead to evaluation problems 
since multiple runs are needed to average the results of 
the randomness we have to deal with. Another approach is 
to uniformly initialize the values of the two probability 
measures and this method produces more consistency in 
the results. This method of initialization is detrimental as 
the model size increases and our observations will show 
this to be true.  

To seed the triple requires deliberately fixing the values 
of one or more of the probability measures that comprise 
the triple. Seeding is done prior to the Baum-Welch 
training so that the model is trained differently in the 
anticipation that the model thus obtained will present us 
with better predictions. 

4.3.1  SEEDING THE CONFUSION MATRIX 
Seeding of the confusion matrix is done using the cluster 
centroids and variances simultaneously or the hidden 
states along with the observation vector or the inhabitant 
actions. The method of seeding is described now. 

We know that matrix B represents the observation symbol 
probability distribution in state j, i.e., B = {bj(k)} and each 
bj(k) represents the probability of observing symbol vk at 
time t given that the state at time t is Sj, i.e., bj(k) = P [vk 
at t | qt = Sj]. The observation vector is a sequence of 
observations where each observation is one of the M 
symbols in the set V. If a symbol has a higher likelihood 
of being part of a particular cluster we assign a high 
probability for the entry in the matrix that corresponds to 
observing this symbol upon reaching the corresponding 
state (or cluster, since they imply the same). If the 
likelihood is small or moderate, the appropriate 
probability is assigned. The value assigned is not a fixed 
value but a small range around the probability value 
computed. This is repeated for every symbol and for each 
of the hidden states. 

4.3.2  INITIALIZING THE OTHER PROBABILITY MEASURES 
Once the matrix B is seeded, the matrix A and the vector ð 
are initialized. We use random and uniform initializations 
for these two probability measures. In addition the matrix 
A can also initialized through a seeding process. In this 
case, we seed the transition matrix using information 
about the clusters as well as the cluster transition 
information obtained from a classification mechanism. 
The classification mechanism uses cluster centers to 
classify a data point to a particular cluster. We classify the 
data points that were used for clustering, i.e., the 
partitions that were clustered are now classified. We 
determine the cluster to which each partition classifies to, 
and we obtain a cluster classification for each partition. 
The sequence of partitions is equivalent to a sequence of 



cluster classifications that indicates which cluster or 
activity follows another. 

Once the probability measures are initialized, the Baum-
Welch method is run to optimize the parameters. The 
seeding of parameters influences the optimization and 
hence is an important step towards constructing the 
HMM. We show the performance for the different types 
of initializations in the section on experimental results. 

5.  Data Synthesis and Validation 

We first created a synthetic data generator to validate our 
approach.  We developed a model of a user’s pattern 
which consists of different activities comprising different 
locations (e.g., kitchen, bathroom) and containing devices 
(e.g., TV, lamp). Devices are turned on or off according 
to the predefined pattern. Randomness is incorporated 
into the time at which the devices are used and in the 
inhabitant’s activities using a Gaussian distribution. We 
generate different data sets corresponding to the usage of 
eight devices. Data set 1 has 10000 actions, corresponding 
to a period of 1250 days of activity. Data set 2 has 10000 
actions corresponding to 1250 days of activity. Data set 0 
has about 10000 actions, which corresponds to a period of 
325 days of activity. In data set 1 the pattern was fixed 
except for the small differences in time of occurrence of 
the actions. Data set 2 has the same fixed patterns but 
there is a substantial difference in time between activities 
on weekdays and on weekends. This forces our approach 
to learn the same set of actions as two different tasks 
since they differ substantially in time. Data set 0 has more 
patterns and randomness that the other data sets. 

Real data was obtained from a student test group who 
used X10 lamp and appliance modules to control devices 
in their homes. One such sample contained around 700 
actions or data instances over a period of one month. The 
difference between the real and simulated data was that 
the real data contains noise over which we had no control. 
In contrast, the data we simulated had patterns cleanly 
embedded so as to test and evaluate our different 
approaches. The labeling of actions to tasks for the real 
data defeats the purpose of action prediction through 
recognition of patterns in the data and in most cases it is 
difficult to come up with labels unless the data is 
inspected. So the real data is useful for a test of how well 
the approaches do in practice. 

We divide the data into training and testing data. For data 
set 1, data set 2 and data set 0 we divide the data into 10 
sets of 1000 actions and perform the training and testing 
on each set of 1000 actions. For these data sets we vary 
the training data from 100 to 900 in steps of 200 and test 
on 100 subsequent actions. We also experiment with 
different values of the number of clusters, the sequence 
length and the allowable time difference. For data sets 1 
and 2 we set the sequence length to 20 and the time 
difference (defined in section 3.1 as ‘P’ minutes) to 600 
and the number of clusters is set to 3 and 6 respectively. 

For lack of space we show in this paper only the 
significant results and refer the reader to Rao (2003) for 
an extensive set of experiments.  

For the real data we perform similar experiments. The 
training data size we use varies from 100 to 500 in steps 
of 200. The values for the time difference and the length 
of action sequence to be retained are the same as for the 
simulated data. The value of the number of clusters used 
is set to 11, 23 and 47. For the real data we have to test 
with different value choices and these values were used as 
a representative of the number of different values that can 
be used. 

For both the simulated and the real data, we employ the 
three different techniques for initialization of the 
probability measures as mentioned in section 4.3. We also 
use a single heuristic that employs both time and location 
information. Since the data is of a sequential nature, we 
do not perform a cross-validation for this data but average 
the results from multiple runs. We test the predictive 
accuracy of the simple Markov model and the Task-based 
Markov model by comparing each predicted action with 
the observed action and average the results over the entire 
test set for both the simulated and real data. 

6.  Experimental Results 

In the set of experiments we describe, we seed the 
confusion matrix while the other probability measures are 
initialized using either random, uniform or seeding 
methods. The best and top 5 predictions for the simple 
Markov model yield similar results and hence we show 
only the top 5 predictions and compare these with the top 
5 predictions suggested by the HMM.  

In figure 1 we show the performance of the top 5 
predictions of the simple Markov model against the 
predictions suggested by the HMM. The performance of 
the HMM and the simple Markov model for the top 5 
predictions are similar and near accurate for this data set.   

 
Figure 1. Data set 1 – Performance of simple Markov model and 
HMM (uniform initialization). 



Observe that the best prediction of the HMM is low 
because of the added complexity introduced into the 
model. The action that is to be performed next is one of 
the actions among the different activities. The accuracy 
value increases if we were to consider the top ‘N’ choices 
for the next action. Using the knowledge of the top ‘N’ 
values we can consider eliminating wrong choices over a 
period of time through feedback. The method of feedback 
and improving the top ‘N’ values is one of the future 
work directions. 

We compare the performance of the HMM using the 
different initializations – random, uniform and through 
seeding. We observe that the uniform initialization 
significantly outperforms the other two (p<0.025) and 
random outperforms the seeded method (p<0.03). 

The data set 2 has patterns that are temporally shifted and 
has more randomness than data set 1. In figure 2 we see 
the performance of the simple Markov model and the 
HMM when the data set 2 is used. We see that the 
performance of the HMM for the top 5 actions is lower 
than for the simple Markov model. The uniform 
initialization and random initialization did comparably 
(significant to t=0.45). These methods outperformed the 
seeding method (p<0.02 and p<0.048 respectively). 

We observe in this experiment that the clustering of the 
partitions of actions is imperfect. Just as data set 1 can be 
hand labeled into patterns and clusters, so can this data set 
be hand labeled into clusters. We observe the 
imperfection in the clustering process by comparing the 
results of the clustering to the results obtained through 
hand labeling. This can be attributed to the difference in 
the time of actions between weekends and weekdays and 
hence an increase in model size. 

 
Figure 2. Data set 2 – Performance of simple Markov model and 
HMM (uniform initialization). 

The effect of seeding improves the performance of the 
HMM and this is seen in the experiments that follow on 
the data set 0 and the real data set. The next experiment 
uses the data set 0 that has significantly more number of 

patterns and randomness. We observe here that the 
seeding method performs better than the other 
initialization methods (p<0.005 for uniform and p<0.023 
for random). We also observe the for certain values of the 
training instance the random initialization does better than 
the uniform method (p<0.005) but for some values 
(training size = 900) the two methods are comparable. In 
figure 3 we show the performance of the simple Markov 
model and the HMM. We observe that with increase in 
patterns and randomness there is a loss in the cluster 
quality. This affects the HMM from coming up with 
sequence of hidden states that best explains a sequence of 
actions. Thus, we see more state transitions and the 
symbols that are output reflect the likelihood of seeing the 
best symbol for a particular state. Thus the task 
identification for more disparate data sets becomes more 
difficult. 

 
Figure 3. Data set 0 – Performance of simple Markov model and 
HMM (initialization through seeding). 

However, as more clusters are introduced the seeding 
method performs better than the uniform initialization 
method. Similarly, we can conjecture that the greater the 
disparity in the data, the better the random initialization 
will perform since uniform initialization can be harmful 
leading to local minima when using the Baum-Welch 
method to train the HMM. Our purpose in testing these 
three techniques is to show that we can apply these 
different techniques for different types of data and 
observe the circumstances under which a particular 
technique performs well. 

The HMM does not perform as well as the simple Markov 
model in the experiments with disparate data and we 
discuss why this is so. 
1) The heuristics that are employed to partition the 

actions are not able to exactly divide these actions 
into tasks. This is because of the nature of the user 
pattern that interleaves actions from different tasks. 
Employing these heuristics will not determine 
whether the interspersing is deliberate and is likely to 



be a task by itself or the mixing was a random 
occurrence. 

2) The clustering of these partitions employs a 
Euclidean distance measure. The simple use of a 
distance function may not be sufficient towards 
clustering the tasks together. The similarity between 
the task instances may need to be considered apart 
from the dissimilarity feature.  

3) When using HMMs, we are dealing with probabilities 
that are multiplied so that even a small change can 
cause significant changes in the best prediction. 

In figure 4 we show the performance of the real data for 
the top 5 predictions of the simple Markov model and the 
HMM. We employ the seeding method to initialize the 
HMM and due to data insufficiency, we are not able to 
test for significance. 

 
Figure 4. Real data – Performance of simple Markov model and 
HMM. 

In the case of real data, the vast number of actions 
(devices along with the action time) and noise in the data 
hinders the simple Markov model from generating 
accurate predictions. To clean up noise in the real data 
will require us to know the actual task labels, which are 
not always available. We see that the simple Markov 
model improves its performance as the size of the training 
data increases. This is in contrast to what happens with 
the HMM. 

The HMM does not perform well as the number of 
training instances increases. This is due in part to the 
noisy nature of the data sample we have. The decrease in 
performance is due to the increase in the number of 
symbols in the alphabet of the HMM that adds to the 
complexity in terms of increasing the model size as well 
as evaluating the forward probabilities when determining 
the next action. The effect is a decrease in the probability 

of choosing the correct observation as the next action. 
Hence there is a decrease in the accuracy with an increase 
in the amount of training data. To verify the decrease is 
due to the complexity we vary the training instances and 
test on a fixed size of the test data size (200 instances). 
This is what is shown in figure 4. A random predictor that 
chooses among the many actions does not compare well. 
Using a random predictor the choice for a simple Markov 
model is one of the ‘N’ different states whereas for a 
HMM the choice is the alphabet size, that is one in ‘M’. 
For 300 training instances we observe 225 states added to 
the simple Markov model and 215 symbols added to the 
alphabet. The random predictor’s accuracy for simple 
Markov is 0.0044 and for the HMM is 0.0047. 

In figure 5 we illustrate the performance of the HMM 
(initialized through seeding) when the number of clusters 
is varied. We observe here that the increase in the number 
of clusters decreases the accuracy, while accuracy drops 
when the amount of training instances is increased for the 
same number of clusters. Due to the limited data available 
we do not have significance tests for these experiments.  

 
Figure 5. Real data – Performance of HMM for a range of the 
number of clusters. 

We also ran tests varying the sequence length and the 
allowable time difference. We find that as the sequence 
length and the time difference increases, the accuracy 
increases. Further increase in sequence length or time 
difference offers no appreciable increase in accuracy and 
can be detrimental for large values.  

7.  Conclusions and Future Work 

In this paper we have described our approach to 
predicting an inhabitant’s behavior in an intelligent 
environment such as a smart home. The role of prediction 
here is to provide assistance for home automation and 
adaptation to an inhabitant’s needs. To predict the next 



action we use a simple Markov model that models each 
action as a state. Our enhancement to this model is to 
categorize the actions into abstract tasks and use this 
information to make subsequent predictions. This is part 
of our Task-based Markov model approach. TMM 
employs heuristics to group actions, clusters the groups 
and uses a HMM to perform prediction. 

Our experiments show the performance of the simple 
Markov model and HMM for real and simulated data sets. 
The results reveal that HMM performs better than the 
simple Markov models for certain data sets. The results of 
the various experiments also illustrate that the real data 
and simulated data differ, and the solutions that work for 
simulated data do not work for the real data. Generalizing 
we can say that the choices of the parameters – allowable 
time difference, number of clusters and sequence length 
are important in deciding the overall accuracy. In spite of 
this, we cannot have a ‘one solution fits all’ policy. For 
real data this is especially true and only based on 
experience we can find a choice of parameters that 
performs reasonably well for a given data set.  

We can say that although identifying abstract tasks of 
users is difficult given just a history of executed actions, 
what has been achieved is progress in the direction of task 
identification in an unsupervised mode. We obtain good 
clustering results for data such as the data sets 1 that has 
identifiable patterns. Thus the TMM finds a right model 
in certain instances that validates the identification of 
tasks. Identifying the task and its associated actions can 
be used to predict future actions. 

One of the pressing issues for future work is to test the 
model using different sources of real data and verify the 
resulting performance. As part of this effort, we are 
currently generating a larger database of smart home 
activity for testing in our Artificial Intelligence lab. 

Another effort that can be pursued is the use of multiple 
simple Markov models, where each model abstracts a task 
and is similar to a cluster. Once the clusters are obtained, 
a Markov model is constructed to encompass the actions 
of each cluster while also forming the transitions from 
one Markov model to another. We can also look into 
alternate methods of cluster generation and compare the 
performance of HMMs with the multiple simple Markov 
models. Other elements that need to be considered once 
we achieve reasonable predictions is the cost associated 
with correct and incorrect predictions and the use of 
feedback to alter the model. 
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