
Identifying Tasks and Predicting Action in Smart Homes using Unlabeled Data

Sira Panduranga Rao SPRAO@CSE.UTA.EDU
Diane J. Cook COOK@CSE.UTA.EDU
Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019 USA

Abstract

An intelligent home is likely in the near future.
An important ingredient in an intelligent
environment such as a home is prediction – of
the next low-level action, the next location, and
the next high-level task that an inhabitant is
likely to perform. In this paper we model
inhabitant actions as states in a simple Markov
model. We introduce an enhancement, the Task-
based Markov model (TMM) method. TMM
discovers high-level inhabitant tasks using the
unlabeled data supplied. We investigate
clustering of actions to identify tasks, and
integrate clusters into a hidden Markov model
that predicts the next inhabitant action. We
validate our approach and observe that for
simulated data we achieve good accuracy using
both the simple Markov model and the TMM,
whereas on real data we see that simple Markov
models outperform the TMM. We also perform
an analysis of the performance of the HMM in
the framework of the TMM when diverse
patterns are introduced into the data.

1. Introduction

We envision that a home capable of being intelligent is a
very likely possibility. A home that is capable of making
decisions will provide a degree of autonomy not currently
found in home environments. Individuals in such a home
will find the home adapting to their needs and living
styles while preserving comfort. In automating the home,
many of the inhabitant’s desired home interactions can be
autonomously performed without the inhabitant or user
intervening. Automation will provide a start towards the
home adapting to the inhabitant’s needs.

The Mavhome Smart Home research project (Cook et al.,
2003; Das et al., 2002) focuses on the creation of an
intelligent home that behaves as a rational agent. An
important component is the ability to make decisions
based on predicted activities. Values that can be predicted
include the usage pattern of devices in the home, the
movement patterns of the inhabitants and typical activities
of the inhabitants. In this paper we model part of the
prediction problem – predicting device usage in a home.

In a home, a user interacts with a variety of devices, and
we term each such interaction as an action. For example,
switching on the kitchen light at a given time is an action
and can be represented as the string ‘10/25/2002 8:15:31
PM Kitchen Light D1 ON’, where D1 is the device
identifier, ‘Light’ is the device type, ‘Kitchen’ represents
the location of the device, and ‘ON’ is the resulting status
of the device. This interaction is time-stamped with the
time and date. An inhabitant such as Sira can be
characterized by his patterns which consist of a number of
high-level tasks broken down into individual actions. For
example, the task of ‘Getting to Work’ consists of turning
on the bathroom light at 7am, turning on and later off the
coffee maker in the kitchen, turning off the bathroom light
at 7:30am, then turning on the kitchen light. After Sira has
breakfast, the garage door is opened while the kitchen
light is turned off and the door is closed after he leaves. In
this case we know the task and the corresponding actions,
but the observation data consists of just the low-level
actions. Our goal is to learn which sets of actions
constitute a well-defined task and use this information to
make predictions.

Work in the area of prediction has been applied to other
problems, such as predicting UNIX commands (Davison
& Hirsh, 1998; Gorniak & Poole, 2000). The prediction
problem is difficult for a home scenario where there are
multiple inhabitants performing multiple tasks at the same
or different times. As a first step, we investigate a portion
of this problem: predicting a single inhabitant's actions
and tasks.

Traditional machine learning techniques (e.g., decision
trees, memory-based learners, etc.) that are employed for
classification face difficulty in using historic information
to make sequential predictions. Markov models offer an
alternative representation that implicitly encodes a portion
of the history. The distinguishing feature of our approach
is that we identify the activity or task that encompasses a
set of actions. We hypothesize that recognizing the task
will help better understand the actions that are part of it,
and we expect to better predict the inhabitant's next task
and thus the next action. For example, if the home
recognizes that Sira is making breakfast, it will better
predict his next action as turning on the coffee maker
given that the last action was turning off the bathroom
light. This paper builds on our previous work in which we

introduce the application of TMM to smart home tasks
(Cook et al., 2003; Rao & Cook, 2003).

The remainder of the paper presents our work. We first
formalize the problem and explain application of a simple
Markov model. We then explain a method of partitioning
actions into sequences, clustering the sequences into
tasks, and integrating task information into a hidden
Markov model. Following this, we discuss generation of
the simulated data, the collection of real data and the
validation of our approach. Finally, we conclude with
some directions for future work.

2. Problem Description and Modeling of Actions

Given actions A1, A2, …, AN we want to predict the next
action, AN+1. An action Ai describes an event in a home.
In the example of an action string provided earlier,
“10/25/2002 8:15:31 PM Kitchen Light D1 ON”, the
action string consists of many features or fields: date,
time, location, device type, device identifier and device
status. In this work we consider devices that have only
binary states – ON and OFF. Also, the locations and the
locations of devices in a home are assumed to be fixed
and do not change over a period of time.

2.1 Markov Models

Our motivation to approach the prediction problem within
the framework of Markov models is prompted by the need
to learn the pattern of user actions without storing large
amounts of history. As a first step we model the entire
sequence of inhabitant actions as a simple Markov model,
where each state corresponds to one or more actions. For
example, consider the action A11: 03/31/2003 8:17:31 PM
Kitchen Light D1 ON which can be represented as a state
in the model. To create a unique state for each possible
action, that is a device manipulation with the equivalent
time stamp, would result in an unreasonably large model.
We construct smaller models by discretizing the time of
the action and ignoring the date, in effect merging similar
states together. Consider another action A12: 04/02/2003
8:11:46 PM Kitchen Light D1 ON. The actions are
composed of fields that we represent as features in our
state representation: date, time, location, device
description (e.g., Light), device id, and device status (e.g.,
ON). Observe that A11 and A12 differ only in the time and
date features. Given two actions we can calculate the
difference in the time of the two actions. If the difference
in time between the actions is ‘minimal’, the
corresponding states can be merged. We say the
difference is ‘minimal’ or ‘negligible’ if this difference is
within the allowable time.

When each new action Ai is processed, a check is made to
see if the action is ‘close enough’ to an existing model
state to merge with that state. An action is close enough
to an existing model state if they both refer to the same
device and location but differ in the time and this time
difference is ‘negligible’. The term ‘negligible’ can be

fixed through use of different values and utilizing the
performance results of these values. If not, a new state is
created with action representative Ai and transitions are
created from the previous action in the sequence to Ai.
The values of each transition reflect the relative frequency
of the transition. Thus, discretizing the time helps
achieve a moderate number of states. If each action were
to be considered as a single state, there would be a great
number of states requiring a tremendous amount of
training data to achieve good prediction performance.

Once the simple Markov model is constructed, it is used
for prediction of actions. A prediction can be generated by
matching the current state with a state in the model and
predicting the action that corresponds to the outgoing
transition from that state with the greatest probability.

3. Partitioning Actions and Clustering into Tasks

In the previous section we mention how a simple Markov
model was built and used for the purpose of predicting
user actions. Sometimes the simple Markov model may
not yield useful predictions. This can be seen when there
is an equal likelihood of a transition to many states from a
particular state. This can be caused if there is too much
noise in the data or there exists some randomness in the
inhabitant’s actions. In this section and the next we
describe enhancements to our model that we use to
predict actions.

We hypothesize that the predictive accuracy can be
improved by incorporating abstract task information into
the model. If we can identify the actions that comprise a
task, then we can identify the current task and generate
more accurate transition probabilities for the
corresponding task.

3.1 Partitioning Actions using Heuristics

Actions in smart home log data are not labeled with the
corresponding high-level task, so we propose to discover
these tasks using unsupervised learning. The first step is
to partition the action sequence into subsequences that are
likely to be part of the same task.

Given actions A1, A2, …, AN we can divide these into
disjoint groups G1, G2, …, GP, where each group consists
of a set of actions AI, …, AI+J and for simplicity every
action is part of only one group. Note that each group
maintains the sequence information and hence all actions
within a group are ordered with respect to the time and
date information.

The partitioning step extracts examples of activities. We
attempt to separate the action sequences into groups that
are likely to act as examples of activities. Given these
examples we can cluster similar examples together and
represent each of the similar examples by a single
instance – a task. Since we have no prior information
about the actions themselves, we need to use heuristics to
group actions such that each group is an instance of a

task. Some of the heuristics that can be employed are ones
that use the location of the device, the time interval
between actions, the status of devices and the number of
actions since the last grouping was formed.

We separate an action sequence Ax, …, Ay into groups Ax,
…, Az and Az+1, …, Ay using any of the following rules:

1) The time difference between Az and Az+1 is > ‘P’
minutes.

2) There is a difference in the device location (such
as another room) between the Az and Az+1.

3) The number of actions in the group is > ‘n’.
We allow for the use of these three rules either
independently or in combination with the other rules. The
result of the partitioning step is a set of groups or
individual tasks. The groups so obtained are now ready to
be clustered into sets of similar tasks.

3.2 Clustering Partitions into Abstract Tasks

Given the different groups from the partitioning process,
we have to cluster similar groups together to form abstract
task classes. As a first step, we extract meta-features
describing the group as a whole. Information that we can
collect from each group includes the number of actions in
the group, the starting time and time duration of this
group, the locations visited and devices acted upon in the
group. This information is stored as a partition PI and thus
we have partitions P1, P2, …, PP. The partitions are now
supplied to the clustering algorithm.

Clustering is used to group instances that are similar to
each other and the individual cluster represents an abstract
task definition. A cluster consists of these similar
instances, and we can consider the mean of the cluster
distribution as the cluster representative, while the
variance represents the disparity in the grouping of the
cluster instances. Because we require clusters that group
similar instances and because of the inherent simplicity of
the partitional clustering algorithms, we apply k-means
clustering to partitions P1, P2, …, PP.

To perform clustering, we utilize LNKnet (Kukolich &
Lippmann, 1995), from MIT Lincoln Labs. The results
are parsed to extract the cluster centroids and variance
values. We average the cluster centroids and variances
over values generated from ten separate runs to promote
generality of the results. For certain data sets we find that
the clustering results show the tasks clearly. As the data is
more disparate we find the clusters less reflect the true
tasks. The resulting clusters represent the abstract
inhabitant tasks. In the context of hidden Markov models
(HMMs) these clusters can be used as hidden states, and
the HMMs can be used in the TMM framework to
perform action prediction.

4. Hidden Markov Models

Hidden Markov models have been used extensively in a
variety of environments that include speech recognition

(Rabiner, 1989), information extraction (Seymore,
McCallum, & Rosenfeld, 1999) and recognizing human
activities (Luhr et al., 2003). HMMs can be either hand
built (Freitag & McCallum, 1999) or constructed
assuming a fixed-model structure that is subsequently
trained using the Baum-Welch algorithm (Baum, 1972).
To our knowledge HMMs have not been used for
prediction of tasks, and our use of HMMs to predict
actions and tasks is a new direction of research.

In this section we discuss how clusters obtained from the
partitioning and clustering process are used in a hidden
Markov model, how HMM parameters are learned, and
the use of HMM within the framework of our task-based
Markov model for predicting actions.

4.1 HMM Terminology

The elements of a HMM can be defined formally. A
HMM is characterized by the following (Rabiner, 1989):
1) N, the number of hidden states in the model: We denote
these individual states as S = {S1, S2, …, SN} and we
denote the state at time t as qt.
2) M, the number of distinct observation symbols per state
or the discrete alphabet size: The individual symbols are
denoted as V = {v1, v2, …, vM}.
3) A, the state transition probability distribution, A = {aij},
where aij = P [qt+1 = Sj | qt = Si], 1 � i, j � N
4) B, the observation symbol probability distribution in
state j, B = {bj(k)}, where
bj(k) = P [vk at t | qt = Sj], 1 � j � N and 1 � k � M
5) ð, the initial state probability distribution, ð = { ð i},
where ði = P [q1 = Si], 1 � i � N
6) O, the observation symbol vector or the sequence of
observations, O=O1O2 … OT, where each observation Ot
is one of the symbols from V, and T is the number of
observations in the sequence.

In our problem, N represents the number of clusters, and
vi is a symbol representing a single discretized action. We
want a moderate set of symbols that represent the entire
training action instances. The number of such symbols is
the value M. T is the size of our training data, and O is a
vector containing the modified form of the actions
represented as symbols. A, also known as the transition
matrix, represents the transition probability distribution
between hidden states. B, also known as the confusion
matrix, represents the probability distribution of
observing a particular symbol (a modified form of an
action) upon arriving at one of the N states. The
distribution ð gives the likelihood of each state
representing the initial state.

4.2 TMM framework

We use the clusters obtained from the clustering step as
hidden states in a HMM. The hidden states thus have the
same features as that of the clusters; namely, the number
of actions in the cluster, the start time of actions in the
cluster, the time duration of the set of actions in the

cluster, the location of the devices and the device
identifiers. Construction of a HMM needs more than just
the information about the hidden states. We need to have
the matrices and the vectors defined before we can
proceed with using the HMM for prediction.

Given that the actions repeat over time, we require a
model that is ergodic. Since our model has only N and M
defined we need to learn the three probability measures A,
B and ð together known as the triple ë, written as ë = (A,
B, ð) in compact form. We use the Baum-Welch
algorithm to train the model. The values of the triple are
initialized randomly, uniformly or through a seeding
procedure (these are discussed in the next section), and
the training is essentially an expectation-modification
(EM) procedure. Following the training of the model, the
forward algorithm (Rabiner 1989) is used to calculate the
probability of an observation sequence given the triple.

Typically, the forward algorithm is used to evaluate an
observation sequence with respect to different HMMs and
the model yielding the greatest probability is the model
that best explains the sequence. However, we consider a
different evaluation mechanism where we have a single
model and many possible observation sequences. The
observation sequence that best fits this model is used for
prediction of the next action. This is accomplished as
follows: given a model ë and the observation sequence
Oi+1Oi+2 …Oi+k, we need to predict Oi+k+1. Symbols
Oi+1Oi+2 …Oi+k represent the observed recent history of
actions. Since the predicted symbol can be any one of the
M alphabet symbols, we have M possible sequences with
the first k symbols in common but different last symbols.

The sequence that yields the greatest probability value for
the model offers symbol k+1 as the predicted next action.
Since the probabilities associated with the model differ
only slightly, we consider the top N predictions as valid
predictions, where N is a configurable value. The
probability distributions of the top N predictions will be
fed to a decision maker, which will learn over time how
the top N predictions are to be considered. Alternatively a
user can be queried regarding the predictions suggested.
Since this method requires remembering k symbols to
make the next prediction, we need to remember at least k
actions. But remembering the entire observation sequence
can be prohibitive while making prediction for the next
action, hence we have a sliding window that keeps only
the last k symbols or actions, where k is a configurable
value.

4.3 Initialization of Parameters

The last section mentions that the parameters of the HMM
need to be initialized before using the Baum-Welch
method to optimize the parameters. The initialization of
the parameters can be done in one of three ways. The
three approaches are: random initialization, uniform
initialization and initialization through the process of
seeding. Previously (Rao & Cook, 2003) we have shown
the results when the confusion matrix is initialized using

the random method. In this paper we show results when
the initialization of the confusion matrix is done through a
process of seeding while the transition matrix and the
initial state vector are initialized using the different
techniques. Random initialization is done with a different
seed each time so that we obtain different probability
measure values. This does lead to evaluation problems
since multiple runs are needed to average the results of
the randomness we have to deal with. Another approach is
to uniformly initialize the values of the two probability
measures and this method produces more consistency in
the results. This method of initialization is detrimental as
the model size increases and our observations will show
this to be true.

To seed the triple requires deliberately fixing the values
of one or more of the probability measures that comprise
the triple. Seeding is done prior to the Baum-Welch
training so that the model is trained differently in the
anticipation that the model thus obtained will present us
with better predictions.

4.3.1 SEEDING THE CONFUSION MATRIX
Seeding of the confusion matrix is done using the cluster
centroids and variances simultaneously or the hidden
states along with the observation vector or the inhabitant
actions. The method of seeding is described now.

We know that matrix B represents the observation symbol
probability distribution in state j, i.e., B = {bj(k)} and each
bj(k) represents the probability of observing symbol vk at
time t given that the state at time t is Sj, i.e., bj(k) = P [vk
at t | qt = Sj]. The observation vector is a sequence of
observations where each observation is one of the M
symbols in the set V. If a symbol has a higher likelihood
of being part of a particular cluster we assign a high
probability for the entry in the matrix that corresponds to
observing this symbol upon reaching the corresponding
state (or cluster, since they imply the same). If the
likelihood is small or moderate, the appropriate
probability is assigned. The value assigned is not a fixed
value but a small range around the probability value
computed. This is repeated for every symbol and for each
of the hidden states.

4.3.2 INITIALIZING THE OTHER PROBABILITY MEASURES
Once the matrix B is seeded, the matrix A and the vector ð
are initialized. We use random and uniform initializations
for these two probability measures. In addition the matrix
A can also initialized through a seeding process. In this
case, we seed the transition matrix using information
about the clusters as well as the cluster transition
information obtained from a classification mechanism.
The classification mechanism uses cluster centers to
classify a data point to a particular cluster. We classify the
data points that were used for clustering, i.e., the
partitions that were clustered are now classified. We
determine the cluster to which each partition classifies to,
and we obtain a cluster classification for each partition.
The sequence of partitions is equivalent to a sequence of

cluster classifications that indicates which cluster or
activity follows another.

Once the probability measures are initialized, the Baum-
Welch method is run to optimize the parameters. The
seeding of parameters influences the optimization and
hence is an important step towards constructing the
HMM. We show the performance for the different types
of initializations in the section on experimental results.

5. Data Synthesis and Validation

We first created a synthetic data generator to validate our
approach. We developed a model of a user’s pattern
which consists of different activities comprising different
locations (e.g., kitchen, bathroom) and containing devices
(e.g., TV, lamp). Devices are turned on or off according
to the predefined pattern. Randomness is incorporated
into the time at which the devices are used and in the
inhabitant’s activities using a Gaussian distribution. We
generate different data sets corresponding to the usage of
eight devices. Data set 1 has 10000 actions, corresponding
to a period of 1250 days of activity. Data set 2 has 10000
actions corresponding to 1250 days of activity. Data set 0
has about 10000 actions, which corresponds to a period of
325 days of activity. In data set 1 the pattern was fixed
except for the small differences in time of occurrence of
the actions. Data set 2 has the same fixed patterns but
there is a substantial difference in time between activities
on weekdays and on weekends. This forces our approach
to learn the same set of actions as two different tasks
since they differ substantially in time. Data set 0 has more
patterns and randomness that the other data sets.

Real data was obtained from a student test group who
used X10 lamp and appliance modules to control devices
in their homes. One such sample contained around 700
actions or data instances over a period of one month. The
difference between the real and simulated data was that
the real data contains noise over which we had no control.
In contrast, the data we simulated had patterns cleanly
embedded so as to test and evaluate our different
approaches. The labeling of actions to tasks for the real
data defeats the purpose of action prediction through
recognition of patterns in the data and in most cases it is
difficult to come up with labels unless the data is
inspected. So the real data is useful for a test of how well
the approaches do in practice.

We divide the data into training and testing data. For data
set 1, data set 2 and data set 0 we divide the data into 10
sets of 1000 actions and perform the training and testing
on each set of 1000 actions. For these data sets we vary
the training data from 100 to 900 in steps of 200 and test
on 100 subsequent actions. We also experiment with
different values of the number of clusters, the sequence
length and the allowable time difference. For data sets 1
and 2 we set the sequence length to 20 and the time
difference (defined in section 3.1 as ‘P’ minutes) to 600
and the number of clusters is set to 3 and 6 respectively.

For lack of space we show in this paper only the
significant results and refer the reader to Rao (2003) for
an extensive set of experiments.

For the real data we perform similar experiments. The
training data size we use varies from 100 to 500 in steps
of 200. The values for the time difference and the length
of action sequence to be retained are the same as for the
simulated data. The value of the number of clusters used
is set to 11, 23 and 47. For the real data we have to test
with different value choices and these values were used as
a representative of the number of different values that can
be used.

For both the simulated and the real data, we employ the
three different techniques for initialization of the
probability measures as mentioned in section 4.3. We also
use a single heuristic that employs both time and location
information. Since the data is of a sequential nature, we
do not perform a cross-validation for this data but average
the results from multiple runs. We test the predictive
accuracy of the simple Markov model and the Task-based
Markov model by comparing each predicted action with
the observed action and average the results over the entire
test set for both the simulated and real data.

6. Experimental Results

In the set of experiments we describe, we seed the
confusion matrix while the other probability measures are
initialized using either random, uniform or seeding
methods. The best and top 5 predictions for the simple
Markov model yield similar results and hence we show
only the top 5 predictions and compare these with the top
5 predictions suggested by the HMM.

In figure 1 we show the performance of the top 5
predictions of the simple Markov model against the
predictions suggested by the HMM. The performance of
the HMM and the simple Markov model for the top 5
predictions are similar and near accurate for this data set.

Figure 1. Data set 1 – Performance of simple Markov model and
HMM (uniform initialization).

Observe that the best prediction of the HMM is low
because of the added complexity introduced into the
model. The action that is to be performed next is one of
the actions among the different activities. The accuracy
value increases if we were to consider the top ‘N’ choices
for the next action. Using the knowledge of the top ‘N’
values we can consider eliminating wrong choices over a
period of time through feedback. The method of feedback
and improving the top ‘N’ values is one of the future
work directions.

We compare the performance of the HMM using the
different initializations – random, uniform and through
seeding. We observe that the uniform initialization
significantly outperforms the other two (p<0.025) and
random outperforms the seeded method (p<0.03).

The data set 2 has patterns that are temporally shifted and
has more randomness than data set 1. In figure 2 we see
the performance of the simple Markov model and the
HMM when the data set 2 is used. We see that the
performance of the HMM for the top 5 actions is lower
than for the simple Markov model. The uniform
initialization and random initialization did comparably
(significant to t=0.45). These methods outperformed the
seeding method (p<0.02 and p<0.048 respectively).

We observe in this experiment that the clustering of the
partitions of actions is imperfect. Just as data set 1 can be
hand labeled into patterns and clusters, so can this data set
be hand labeled into clusters. We observe the
imperfection in the clustering process by comparing the
results of the clustering to the results obtained through
hand labeling. This can be attributed to the difference in
the time of actions between weekends and weekdays and
hence an increase in model size.

Figure 2. Data set 2 – Performance of simple Markov model and
HMM (uniform initialization).

The effect of seeding improves the performance of the
HMM and this is seen in the experiments that follow on
the data set 0 and the real data set. The next experiment
uses the data set 0 that has significantly more number of

patterns and randomness. We observe here that the
seeding method performs better than the other
initialization methods (p<0.005 for uniform and p<0.023
for random). We also observe the for certain values of the
training instance the random initialization does better than
the uniform method (p<0.005) but for some values
(training size = 900) the two methods are comparable. In
figure 3 we show the performance of the simple Markov
model and the HMM. We observe that with increase in
patterns and randomness there is a loss in the cluster
quality. This affects the HMM from coming up with
sequence of hidden states that best explains a sequence of
actions. Thus, we see more state transitions and the
symbols that are output reflect the likelihood of seeing the
best symbol for a particular state. Thus the task
identification for more disparate data sets becomes more
difficult.

Figure 3. Data set 0 – Performance of simple Markov model and
HMM (initialization through seeding).

However, as more clusters are introduced the seeding
method performs better than the uniform initialization
method. Similarly, we can conjecture that the greater the
disparity in the data, the better the random initialization
will perform since uniform initialization can be harmful
leading to local minima when using the Baum-Welch
method to train the HMM. Our purpose in testing these
three techniques is to show that we can apply these
different techniques for different types of data and
observe the circumstances under which a particular
technique performs well.

The HMM does not perform as well as the simple Markov
model in the experiments with disparate data and we
discuss why this is so.
1) The heuristics that are employed to partition the

actions are not able to exactly divide these actions
into tasks. This is because of the nature of the user
pattern that interleaves actions from different tasks.
Employing these heuristics will not determine
whether the interspersing is deliberate and is likely to

be a task by itself or the mixing was a random
occurrence.

2) The clustering of these partitions employs a
Euclidean distance measure. The simple use of a
distance function may not be sufficient towards
clustering the tasks together. The similarity between
the task instances may need to be considered apart
from the dissimilarity feature.

3) When using HMMs, we are dealing with probabilities
that are multiplied so that even a small change can
cause significant changes in the best prediction.

In figure 4 we show the performance of the real data for
the top 5 predictions of the simple Markov model and the
HMM. We employ the seeding method to initialize the
HMM and due to data insufficiency, we are not able to
test for significance.

Figure 4. Real data – Performance of simple Markov model and
HMM.

In the case of real data, the vast number of actions
(devices along with the action time) and noise in the data
hinders the simple Markov model from generating
accurate predictions. To clean up noise in the real data
will require us to know the actual task labels, which are
not always available. We see that the simple Markov
model improves its performance as the size of the training
data increases. This is in contrast to what happens with
the HMM.

The HMM does not perform well as the number of
training instances increases. This is due in part to the
noisy nature of the data sample we have. The decrease in
performance is due to the increase in the number of
symbols in the alphabet of the HMM that adds to the
complexity in terms of increasing the model size as well
as evaluating the forward probabilities when determining
the next action. The effect is a decrease in the probability

of choosing the correct observation as the next action.
Hence there is a decrease in the accuracy with an increase
in the amount of training data. To verify the decrease is
due to the complexity we vary the training instances and
test on a fixed size of the test data size (200 instances).
This is what is shown in figure 4. A random predictor that
chooses among the many actions does not compare well.
Using a random predictor the choice for a simple Markov
model is one of the ‘N’ different states whereas for a
HMM the choice is the alphabet size, that is one in ‘M’.
For 300 training instances we observe 225 states added to
the simple Markov model and 215 symbols added to the
alphabet. The random predictor’s accuracy for simple
Markov is 0.0044 and for the HMM is 0.0047.

In figure 5 we illustrate the performance of the HMM
(initialized through seeding) when the number of clusters
is varied. We observe here that the increase in the number
of clusters decreases the accuracy, while accuracy drops
when the amount of training instances is increased for the
same number of clusters. Due to the limited data available
we do not have significance tests for these experiments.

Figure 5. Real data – Performance of HMM for a range of the
number of clusters.

We also ran tests varying the sequence length and the
allowable time difference. We find that as the sequence
length and the time difference increases, the accuracy
increases. Further increase in sequence length or time
difference offers no appreciable increase in accuracy and
can be detrimental for large values.

7. Conclusions and Future Work

In this paper we have described our approach to
predicting an inhabitant’s behavior in an intelligent
environment such as a smart home. The role of prediction
here is to provide assistance for home automation and
adaptation to an inhabitant’s needs. To predict the next

action we use a simple Markov model that models each
action as a state. Our enhancement to this model is to
categorize the actions into abstract tasks and use this
information to make subsequent predictions. This is part
of our Task-based Markov model approach. TMM
employs heuristics to group actions, clusters the groups
and uses a HMM to perform prediction.

Our experiments show the performance of the simple
Markov model and HMM for real and simulated data sets.
The results reveal that HMM performs better than the
simple Markov models for certain data sets. The results of
the various experiments also illustrate that the real data
and simulated data differ, and the solutions that work for
simulated data do not work for the real data. Generalizing
we can say that the choices of the parameters – allowable
time difference, number of clusters and sequence length
are important in deciding the overall accuracy. In spite of
this, we cannot have a ‘one solution fits all’ policy. For
real data this is especially true and only based on
experience we can find a choice of parameters that
performs reasonably well for a given data set.

We can say that although identifying abstract tasks of
users is difficult given just a history of executed actions,
what has been achieved is progress in the direction of task
identification in an unsupervised mode. We obtain good
clustering results for data such as the data sets 1 that has
identifiable patterns. Thus the TMM finds a right model
in certain instances that validates the identification of
tasks. Identifying the task and its associated actions can
be used to predict future actions.

One of the pressing issues for future work is to test the
model using different sources of real data and verify the
resulting performance. As part of this effort, we are
currently generating a larger database of smart home
activity for testing in our Artificial Intelligence lab.

Another effort that can be pursued is the use of multiple
simple Markov models, where each model abstracts a task
and is similar to a cluster. Once the clusters are obtained,
a Markov model is constructed to encompass the actions
of each cluster while also forming the transitions from
one Markov model to another. We can also look into
alternate methods of cluster generation and compare the
performance of HMMs with the multiple simple Markov
models. Other elements that need to be considered once
we achieve reasonable predictions is the cost associated
with correct and incorrect predictions and the use of
feedback to alter the model.

Acknowledgements

This work is supported by the National Science
Foundation grant IIS-0121297.

References

Baum, L. (1972). An inequality and associated
maximization technique in statistical estimation of

probabilistic functions of Markov processes.
Inequalities, Vol. 3, (pp. 1-8).

Cook, D. J., Youngblood, M., Heierman, III, E. O.,
Gopalratnam, K., Rao, S., Litvin, A., & Khawaja, F.
(2003). MavHome: An Agent-Based Smart Home.
Proceedings of the First IEEE International Conference
on Pervasive Computing and Communications –
PerCom 2003, (pp. 521-524), March 2003.

Das, S. K., Cook D. J., Bhattacharya, A., Heierman III, E.
O., & Lin, T-Y. (2002). The Role of Prediction
Algorithms in the MavHome Smart Home Architecture.
IEEE Wireless Communications Special Issue on Smart
Homes, Vol. 9, No. 6, 2002, 77-84.

Davison, B. D., & Hirsh, H. (1998). Predicting Sequences
of User Actions. Predicting the Future: AI Approaches
to Time Series Problems, (Technical Report WS-98-07),
(pp. 5-12), AAAI Press.

Freitag, D., & McCallum, A. (1999). Information
extraction using HMMs and shrinkage. Proceedings of
the AAAI-99 Workshop on Machine Learning for
Information Extraction, (Technical Report WS-99-11),
(pp. 31-36), AAAI press.

Gorniak, P., & Poole, D. (2000). Predicting Future User
Actions by Observing Unmodified Applications.
National Conference on Artificial Intelligence, AAAI
2000, (pp. 217-222), AAAI press.

Kukolich, L., & Lippmann, R. (1995). LNKNet User’s
Guide, http://www.ll.mit.edu/IST/lnknet/guide.pdf.

Luhr, S., Bui, H. H., Venkatesh, S., & West, G. A. W.
(2003). Recognition of Human Activity through
Hierarchical Stochastic Learning. Proceedings of the
First IEEE International Conference on Pervasive
Computing and Communications – PerCom 2003, (pp.
416-422), March 2003.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE, 77(2):257-285.

Rao, S. (2003). Inhabitant Action Prediction in Smart
Homes using Action and Task Models. Master’s thesis,
Department of Computer Science and Engineering,
University of Texas at Arlington.

Rao, S., & Cook, D. J. (2003). Improving the
Performance of Action Prediction through Identification
of Abstract Tasks. In Proceedings of the 16th
International FLAIRS-2003 Conference, (pp. 43-47),
AAAI press.

Seymore, K., McCallum, A., & Rosenfeld, R. (1999).
Learning hidden Markov model structure for
information extraction. Proceedings of AAAI-99
Workshop on Machine Learning for Information
Extraction, (Technical Report WS-99-11), (pp. 37-42),
AAAI press.

