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Abstract

The ever-incressing number of chemica
compounds added every yea has not been
acompanied by a similar growth in ou ability to
analyze and classfy these @mmpounds. The problem of
prevention o cancer caused by many of these
chemicds has been o grea scientific and
humanitarian value.

The use of Al discovery toals for predicting
chemicd toxicity is being investigated. The basic idea
behind the work is to obtain structure-adivity
representation (SARS)[Srinivasan et a.], which relates
moleaular structures to cancerous adivity. The data is
obtained from the U.S National Toxicology Program
conducted by the National Institute of Environmental
Hedth Sciences (NIEHS). A genera approach to
automaticdly discover repetitive substructures from
the datasets is outlined hy this reseach. Relevant
SARs are identified using the Subdue substructure
discovery system that discovers commonly occurring
substructures in a given set of compounds. The best
substructure given by Subdue is used as a pattern
indicaive of cancerous adivity.

I ntroduction

The reseacher's ability to interpret the data and
discover interesting patterns within the data is of grea
importance & it helps in obtaining relevant SARs
[Srinivasan et a.], for the cause of chemicd cancers (e.g.,
Progol identified a primary amine group as a relevant
SAR for the caise of the chemicd cancers [Srinivasan et
al. 1997]). One method for interpreting and discovering
interesting patterns in the data is the identificaion of
common substructures  within  the data These
substructures should be cgable of compressing the data
and identifying conceptually interesting substructures that
enhance the interpretation of data. This identification aso
helps in simplifying the data by repladng instances of the
substructure with a pointer to the newly discovered
substructure. The subsequent iterations of the discovery
and replacement process construct a hierarchicad

description of the structural data in terms of discovered
substructures.

Discovering substructures for identifying relevant
SARs has been a prominent area of applicaion for
knowledge discovery systems like the Subdue system
[Cook and Holder 1994]. It discovers interesting
substructures in structural data based on the Minimum
Description Length [MDL] principle [Rissanen 1989.
Subdue discovers substructures that compress the original
data and represent structural conceptsin data.

This paper is organized as follows. The next
sedion discusses the problem of chemicd toxicity
prediction. Then the mechanism by which the knowledge
discovery system Subdue extrads moleaular descriptions
for attaining relevant SARs is explained in detail. The
next sedion discusses the current domain (chemica
toxicity). The methoddogies used by the domain
spedalist to represent the data and the preliminary results
are discussd in brief. The final sedions talk about the
conclusions and the future work in thisarea

Carcinogenesis Prediction Problem

The problem of prediction of carcinogenedty of a
particular compound is of unquestionable importance. It is
estimated that nealy 100000 chemicals are in use in
large amounts every day [Huff, Haseman and Rall 1997.
Many more chemicds are being added every yea to the
already existing set of chemicds. In light of this ever-
growing increase in the number of chemicds, the U.S
National Toxicology Program conducted chemicd
bioassays to help in identifying substances that may have
a cacinogenic &€fed. The processof obtaining empirica
evidence from such rodent bioassys is too expensive and
too slow to cope with the ever-increasing number of
chemicds. (On an average eab rodent is exposed to a
chemicd for aperiod d two yeas and an average of 500-
1000 chemicds are alded every yea). Hence an urgent
need for models that propcse molecular mechanisms for
cacinogenesis is envisaged. It is believed that these



models would cut down the asts, reduce dependence on
laboratory animals and generate reliable toxicity
predictions for al kinds of chemicds.

Overview of SUBDUE

The Subdue system discovers the substructures in
the databases that compress the origina data ad
represent structural concepts in the data. The best
substructure is found after multiple passes by repladng
the previoudly discovered substructures in ead pass A
substructure is a mnnected subgraph within the graphicd
representation. The discovery system represents structural
data & a labeled graph. Objeds in the data map to
vertices or small subgraphs in the graph, and relationships
between objeds map to dreded o undireded edges in
the graph. This graphicd representation serves as input to
Subdue (e.g., seefigure 1). The discovery agorithm used
by Subdue is a computationally constrained beam seach.
The dgorithm begins with the substructure matching a
single vertex in the graph. The dgorithm seleds the best
substructure in ead iteration and incrementally expands
the instances of a substructure. An instance of a
substructure in an input graph is a set of vertices and
edges from the input graph that match, graph
theoreticdly, to the graphical representation of the
substructure. These new substructures become @andidates
for further expansion. This algorithm searches for the best
substructure until al possble substructures have been
considered or the total amount of computation exceels a
given limit. Evaluation of ead substructure is determined
by how well the substructure compresses the description
length of the mncerned database.

To identify substructures that occur often in data
but not aways in the same form, Subdue uses a
computationally bounded inexad graph match [Bunke
and Allerman 1983. The inexad substructure discovery
can be used to discover interesting structures in the input
data, whose instances are found either in the same form or
in a dightly convoluted form. Subdue's sach can be
guided towards appropriate substructures for a particular
domain (in our case the chemicad toxicity domain) by the
inclusion of badkground knowledge (e.g., known relevant
SARS).

Chemical Toxicity Domain

A database of more than 300 chemicds has been
creaed due to the tests conducted by the U.S. National
Toxicology Program (NTP) [niehs]. These compounds are
determined to be cacinogenic or noncarcinogenic. Levels
of evidence of carcinogenedty are obtained from the
incidence of tumors on long term exposure to chemicals
using rats and mouse strains as predictive surrogates for

humans. The NTP assgned the following levels of
evidence for the compounds. CE — clea evidence of
cancerous adivity, SE — some evidence of cancerous
adivity, E — equivocd evidence of cancerous adivity and
NE — no evidence of cancerous adivity. Conventional
regresson based tedhniques ([Kubini 1993) cannot be
applied to model the compouwnds in the NTP database
becaise of the diversity of the mmpounds present. Hence
the need for some discovery algorithms that can discover
interesting, useful concepts even in the most varying
domains.

The datasets in the NTP database mntain
information about more than 300 chemicd compounds
that are éther carcinogenic or noncarcinogenic. Primarily
there ae 298 chemical compounds whose cacinogenedty
is known. This comprises the training set of the Subdue
program. There ae 69 compounds whose cacinogenedty
is not known. This comprises the experimental set of the
Subdue program. The information in these sets relates to
the molecular structures of the compounds, and includes
the @oms, bonds and domain specific knowledge aout
various groups like dcohol, amine, amino, benzene, ester,
ether, ketone, methanol, methyl, nitro, phenol and sulfide.
The representation also contains information about the
compound test results (+/-) on the various properties of
cacinogenedty like Ames test, Chromex, Chromaberr,
Drosophilia, Mouse-Lymph, Salmonella Assay. The dam
of this reseach projed is to oltain SARs despite the
diversity present among the cmpounds.

M ethodology

The training set is further divided into pasitive
examples and negative examples. Subdue is applied to the
positive (cancerous) and the negative (non-cancerous)
examples sparately and the best substructures are
identified in ead of these training sets. The resultant best
substructures from each of the two training sets (positive
and negative) are mmpared. The substructures that occur
in the positive examples but not in the negative examples
are identified. These identified substructures are used as
the pattern indicative of cancerous adivity.

The toxicity of the chemicals in the experimental
set can be determined by the following approaches. One
approach is to apply Subdue indvidualy to the
compouwnds in the experimental set and record the best
substructure in ead of the cmpounds. Based on the
judgement of the domain spedadlist (comparing the best
substructure returned by Subdue with the substructures
identified from the training set) the compound in the
experimental set is determined to be cacinogenic or
noncarcinogenic. Presently we ae using this approach in
identifying the carcinogenicity of compounds in the
experimental set. The second approach is to include



substructures identified in the training set as predefined
substructures for Subdue in its search on the experimental
set. Subdue will first search the input graph of the
compound for instances of the predefined substructures,
using inexact graph matches. Instances that match within
the inexact match threshold are subsequently expanded.
The domain specialist determines the carcinogenecity or
noncarcinogenecity of a compound in the experimental
set depending on how well the predefined substructure
helped in compressing the description length of the
compound. The third approach is to check if the
discovered substructure SAR appears anywhere in the
compound to be classified. Once unique SARs are
discovered, the presence of only one substructure might
be enough evidence to predict carcinogenecity.

The input to the Subdue program is the graphical
representation of all the chemical compounds. Each of the
atoms in a compound is represented as a vertex and the

bonds between the atoms are represented as undirected
edges between the vertices. Domain knowledge is
incorporated into Subdue to guide the discovery process.
Various groups like methyl, benzene, amino etc., each are
represented as a vertex in each compound and have
directed edges to al the atoms in a compound, which
participate in the group. Properties like Salmonella assay
and Ames test are each represented as a vertex in each
compound and have directed edges to all the atoms in the
compound with the string label on each of these edges
specifying whether the compound tested positive or
negative on this property. Figure 1 shows a sample graph.
To capture the diversity present in the atoms (atom name,
atom type, and partia charge), each of the atoms is
represented as a separate hode with directed edges to the
name of the atom (n), type (t) and partial charge (p). The
relationship between atoms (i.e. bonds) is represented as
undirected edges.

Figure 1: Results of Subdue on part of chemical compound.



Figure 4: Substructure with 4 vertices discover ed by Subdue.
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Figure5: Substructurewith 8 vertices discover ed by Subdue.




Subdue discovers substructure S; in the
compound asin figure 2 above. S; when used to compress
the sample graph further, finds substructure S, asin figure
3. Subdue generates a similar hierarchicd description of
structures with such repeaed appli caions.

Results

Subdue has been successul in discovering small
substructures. Figure 4 is an example of a substructure
discovered. Subdue was succesdul in discovering the
exad number of instances of this substructure in the
positive (cancerous) examples. Figue 5 is an
improvement over figure 4. Subdue discovered a
substructure with 8 vertices. Efforts are being made in
guiding Subdue to discover more mmplex substructures
that might help in relaing a mpound with
cacinogeneadty.

The parameter settings for Subdue help in
guiding the seach towards a more spedfic result. The
parameters that might affed the results of Subdue most
are the threshold parameter (the fradion of the size of an
instance by which the instance @n be different) and the
size parameter (size of considered substructures). By
spedfying a value for the threshold parameter, the inexad
graph match can be done. If the domain spedali st believes
that the partial charge value need not be exadly matched,
but can vary by a range of (+/-) x, then Subdue can be
tuned to perform the inexad graph match by spedfying a
value for the threshold parameter. The size of the
substructure considered by Subdue can be spedfied by the
size parameter that has a lower bound and an upper
bound. If the domain spedalist believes that the
substructure discovered by Subdue is too inconsequential
or too kg to find any relevant SARs, then appropriate
values can be spedfied to guide Subdue in its discovery.
We ae optimistic that relevant SARs that indicae
cacinogenic adivity can be identified by Subdue.

Conclusions

The prediction of cacinogenedty and the
modeling of diverse demicd compownds is of
unguestionable importance. The data mining algorithms
cgoable of handling the increasing structural component
of today’s databases can achieve this. Subdue, a data
mining algorithm, is gedficdly designed to dscover
increasingly interesting and repetitive patterns within the
data that relates molecular structure to cancerous adivity.

In this paper, the methoddogies of representing
the chemicd toxicity domain are discussed at length. The
initial results of Subdue ae explained and an effort is
made to explain the eventual cgpability of Subdue to

discover a pattern that distinguishes carcinogenic and
noncarcinogenic compounds.

FutureWork

Future reseach aims at describing the posshle
relationships between molecular structure of a compound
on the one hand, and hologicd and toxicologicad
proceses on the other. Subdue is presently in an
experimental phase. Making use of paradlel and
distributed resources can significantly improve the run-
time performance of data-intensive and compute-intensive
discovery programs such as Subdue. We ae aurrently
evaluating the benefits of applying a parallel version
[Galal, Cook and Holder 1997] of Subdue on the chemica
toxicity domain.
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