
STRUCTURE DISCOVERY IN SEQUENTIALLY-CONNECTED 
DATA STREAMS 

 

JEFFREY COBLE, DIANE J. COOK AND LAWRENCE B. HOLDER 

Department of Computer Science and Engineering 
The University of Texas at Arlington 

Box 19015, Arlington, TX 76019, USA 
{coble,cook,holder}@cse.uta.edu 

 
 

Received   
Revised   
Accepted   

 

 

Much of current data mining research is focused on discovering sets of attributes that discriminate 
data entities into classes, such as shopping trends for a particular demographic group.  In contrast, 
we are working to develop data mining techniques to discover patterns consisting of complex 
relationships between entities.  Our research is particularly applicable to domains in which the 
data is event driven, such as counter-terrorism intelligence analysis.  In this paper we describe an 
algorithm designed to operate over relational data received from a continuous stream.  Our 
approach includes a mechanism for summarizing discoveries from previous data increments so 
that the globally best patterns can be computed by examining only the new data increment.  We 
then describe a method by which relational dependencies that span across temporal increment 
boundaries can be efficiently resolved so that additional pattern instances, which do not reside 
entirely in a single data increment, can be discovered.  We also describe a method for change 
detection using a measure of central tendency designed for graph data.  We contrast two 
formulations of the change detection process and demonstrate the ability to identify salient 
changes along meaningful dimensions and recognize trends in a relational data stream. 
 
Keywords:  Relational Data Mining; Stream Mining, Change Detection 

 

 

1.  Introduction 
 
Much of current data mining research is focused on algorithms that can discover sets of 
attributes that discriminate data entities into classes, such as shopping or banking trends 
for a particular demographic group.  In contrast, our work is focused on data mining 
techniques to discover relationships between entities.  Our work is particularly applicable 
to problems where the data is event driven, such as the types of intelligence analysis 
performed by counter-terrorism organizations.  Such problems require discovery of 
relational patterns between the events in the environment so that these patterns can be 
exploited for the purposes of prediction and action.   



Also common to these domains is the continuous nature of the discovery problems.  
For example, Intelligence Analysts often monitor particular regions of the world or focus 
on long-term problems like Nuclear Proliferation over the course of many years.  To 
assist in such tasks, we are developing data mining techniques that can operate with data 
that is received incrementally. 

In this paper we present Incremental Subdue (ISubdue), which is the result of our 
efforts to develop an incremental discovery algorithm capable of evaluating data received 
incrementally.  ISubdue iteratively discovers and refines a set of canonical patterns, 
considered to be most representative of the accumulated data.  We also describe an 
approach for change detection in relational data streams and contrast two approaches to 
the problem formulation. 

 
 
 
 
 
 
 
 
 
 
 
 

2.  Structure Discovery 
 
The work we describe in this paper is based upon Subdue1, which is a graph-based data 
mining system designed to discover common structures from relational data.  Subdue 
represents data in graph form and can support either directed or undirected edges.  
Subdue operates by evaluating potential substructures for their ability to compress the 
entire graph, as illustrated in Figure 1.  The better a particular substructure describes a 
graph, the more the graph will be compressed by replacing that substructure with a 
placeholder.  Repeated iterations will discover additional substructures, potentially those 
that are hierarchical, containing previously compressed substructures.   

Subdue uses the Minimum Description Length Principle2  as the metric by which graph 
compression is evaluated.  Subdue is also capable of using an inexact graph match 
parameter to evaluate substructure matches so that slight deviations between two patterns 
can be considered as the same pattern. 

 

Fig. 1.  Subdue discovers common substructures within relational data 
by evaluating their ability to compress the graph. 

D

E

Y

X Z

S1
S1A

D

C

B

E

C
B

A

Y

X Z

Common Substructures Compressed Graph



3.  Incremental Discovery 
 
For our work on ISubdue, we assume that data is received in incremental blocks.  
Repeatedly reprocessing the accumulated graph after receiving each new increment 
would be intractable because of the combinatoric nature of substructure evaluation, so 
instead we wish to develop methods to incrementally refine the substructure discoveries 
with a minimal amount of reexamination of old data.   

 
 

3.1.  Independent data 
 
In our previous work3, we developed a method for incrementally determining the best 
substructures within sequential data where each new increment is a distinct graph 
structure independent of previous increments.  The accumulation of these increments is 
viewed as one large but disconnected graph.   

We often encounter a situation where local applications of Subdue to the individual 
data increments will yield a set of locally-best substructures that are not the globally best 
substructures that would be found if the data could be evaluated as one aggregate block.  
To overcome this problem, we introduced a summarization metric, maintained from each 
incremental application of Subdue, that allows us to derive the globally best substructure 
without reapplying Subdue to the accumulated data. 

To accomplish this goal, we rely on a few artifacts of Subdue’s discovery algorithm.  
First, Subdue creates a list of the n best substructures discovered from any dataset, where 
n is configurable by the user.   

 
 
 
Second, we use the value metric Subdue maintains for each substructure.  Subdue 

measures graph compression with the Minimum Description Length principle as 
illustrated in Equation 1, where DL(S) is the description length of the substructure being 
evaluated, DL(G|S) is the description length of the graph as compressed by the 
substructure, and DL(G) is the description length of the original graph.  The better our 
substructure performs, the smaller the compression ratio will be.  For the purposes of our 
research, we have used a simple description length measure for graphs (and 
substructures) consisting of the number of vertices plus the number of edges.  C.f. Cook 
and Holder 1994 for a full discussion of Subdue’s MDL graph encoding algorithm4. 

Subdue’s evaluation algorithm ranks the best substructure by measuring the inverse of 
the compression value in Equation 1.  Favoring larger values serves to pick a substructure 

)G(DL
)S|G(DL)S(DL

nCompressio
+= (1) 



that minimizes DL(S) + DL(G|S), which means we have found the most descriptive 
substructure. 

For ISubdue, we must use a modified version of the compression metric to find the 
globally best substructure, illustrated in Equation 2. 

 
 
 
 
 
With Equation 2 we calculate the compression achieved by a particular substructure, 

Si, up through and including the current data increment m.  The DL(Si) term is the 
description length of the substructure, Si, under consideration.  The term  

 
 
 
represents the description length of the accumulated graph after it is compressed by the 
substructure Si.   

Finally, the term  
 

 
 
represents the full description length of the accumulated graph. 

 
 

 
 

 
At any point we can then reevaluate the substructures using Equation 3 (inverse of 
Equation 2), choosing the one with the highest value as globally best. 

After running the discovery algorithm over each newly acquired increment, we store 
the description length metrics for the top n local subs in that increment.  By applying our 
algorithm over all of the stored metrics for each increment, we can then calculate the 
global top n substructures.   

 
 
 
 
 

(2) 
�

�

=

=
+

=
m

j
j

m

j
iji

im

)G(DL

)S|G(DL)S(DL
)S(Compress

1

1

�
�
�
�

�

�

�
�
�
�

�

�

+�

�

=

=
m

j
iji

m

j
j

)S|G(DL)S(DL

)G(DL
)imax(arg

1

1 (3) 

�
=

m

j
ij )S|G(DL

1

�
=

m

j
j )G(DL

1



4.  Sequentially Connected Data 
 
We now turn our attention to the challenge of incrementally modifying our knowledge of 
the most representative patterns when dependencies exist across sequentially received 
data increments.  As each new data increment is received, it may contain new edges that 
extend from vertices in the new data increment to vertices in previous increments. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2 illustrates an example where two data increments are introduced over 

successive time steps.  Common substructures have been identified and two instances 
extend across the increment boundary.  Referring back to our counterterrorism example, 
it is easy to see how analysts would continually receive new information regarding 
previously identified groups, people, targets, or organizations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A

D

C

B

E

C
B

A

Y

X Z

Common
Substructures

N

M

Y

C

A
L

B

A

R

X

Z

J

B

C

O

H

Increment
Boundary

A

B

C

T0 T1

Fig. 2.  Sequentially connected data 

Execute
Unconnected

Algorithm from
Chapter 4

New Increment

Store statistics for
local discoveries and
update globally-best

list (top-n)

Identify spanning
edges; Create 2-

vertex instances with
vertices connected
by spanning edge

For each top-n sub
for which we’ve
found a 2-vertex

instance, create a
reference graph

Repeatedly extend
each instance with

respect to its
reference graph

Update local
increment statistics;

Recompute the
globally-best list

match

 Associate 2-vertex
instances with each
top-n substructure

for which instance is
a subgraph

Fig. 3  Flowchart illustrates the high-level steps of the discovery algorithm for sequentially-connected relational 
data 



4.1.  Algorithm 
 
Our only prerequisite for the algorithm is that any pattern spanning the increment 
boundary that is prominent enough to be of interest is also present in the local increments.  
As long as we have seen the pattern previously and above some threshold of support, then 
we can recover all instances that span the increment boundary.  Figure 3 illustrates the 
basic steps of the discovery algorithm at a high level.  We discuss the details of the 
algorithm in the following sections. 
 
 
4.1.1.  Approach 
 
Let 

• Gn =  set of top-n globally-best substructures 
• Is =  set of pattern instances associated with a substructure s∈  Gn 
• Vb = set of vertices with an edge spanning the increment boundary and that 

are potential members of a top-n substructure 
• Sb = 2-vertex pairs of seed substructure instances with an edge spanning the 

increment boundary 
• Ci = set of candidate substructure instances that span the increment boundary 

and that have the potential of growing into an instance of a top-n substructure. 
 

The first step in the discovery process is to apply the algorithm we developed for the 
independent increments discussed above.  This involves running Subdue discovery on the 
data contained exclusively within the new increment, ignoring the edges that extend to 
previous increments.  We then update the statistics stored with the increment and 
compute the set of globally best substructures Gn.  This process is illustrated in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 

New Increment
Received

Increment Boundary

Step 1: Run local
discovery, store
increment statistics,
compute best global
subs

Fig. 4.  The first step of the sequential discovery 
process is to evaluate the local data in the new 
increment 



We perform this step to take advantage of all available data in forming our knowledge 
about the set of patterns that are most representative of the system generating the data.  
Although the set of top-n substructures computed at this point in the algorithm does not 
consider substructure instances spanning the increment boundary and therefore will not 
be accurate in terms of the respective strength of the best substructures, it will be more 
accurate than if we were to ignore the new data entirely prior to addressing the increment 
boundary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second step of our algorithm is to identify the set of boundary vertices, Vb, where 

each vertex has a spanning edge that extends to a previous increment and is potentially a 
member of one of the top-n best substructures in Gn.  We can identify all boundary 
vertices, Vb, in O(m), where m is the number of edges in the new increment.  Where p = 
|Vb| << m, then for each boundary vertex in Vb we can identify those that are potential 
members of a top-n substructure in O(k), where k is the number of vertices in the set of 
substructures Gn, for a total complexity of O(pk).  Figure 5 illustrates this process. 

 
 
 
 
 

Fig. 5.  The second step is to identify all boundary 
vertices that could possibly be part of an instance of 
a top n pattern.  The third step is to create 2-vertex 
substructure instances by joining the vertices that 
span the increment boundary.  

B

C

Step 2: Identify all vertices that have an
edge extending to a previous increment;
Keep only those that have the potential to
be grown into an instance of a top-n sub

A

B

A

B

C A

K B

R A

D B

Step 3: Create a 2-vertex
substructure instance by
connecting each vertex in the
list from step 2 with the edge
that spans the increment and
the corresponding vertex in a
previous increment;
Keep only those where both
vertices are members of a
top-n sub

C A

D B



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the third step we create a set of 2-vertex substructure seed instances by connecting 

each vertex in Vb with the spanning edge to its corresponding vertex in a previous 
increment.  We immediately discard any instance where the second vertex is not a 
member of a top-n substructure (all elements of Vb are already members of a top-n 
substructure), which again can be done in O(pk).  A copy of each seed instance is 
associated with each top-n substructure, si∈  Gn, for which it is a subset.   

To facilitate an efficient process for growing the seed instances into potential instances 
of a top-n substructure, we now create a set of reference graphs.  We create one reference 
graph for each copy of a seed instance, which is in turn associated with one top-n 
substructure.  Figure 6 illustrates this process.   

Seed
Instance

Reference
Graph

Complete
Graph

Mapping

Step 4: For each 2-vertex seed
instance, create a Reference
Graph that is one extension in
every possible direction beyond
the instance

Mapping

Fig. 6.  To facilitate efficient instance 
extension, we create a reference graph, 
which we keep extended one step ahead 
of the instances it represents. 

Fig. 7.  The reference graphs are used as a template to extend 
new candidate instances for evaluation against the top-n 
substructures.  Failed extensions are propagated back into the 
reference graph with marked edges and vertices, to guide 
future extensions. 

Seed
Instance

Evaluate candidate
instances and mark
reference graph

Reference
Graph

Candidate
Instances

X
XX



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We create the initial reference graph by extending the seed instance by one edge and 

vertex in all possible directions.  We can then extend the seed instance with respect to the 
reference graph to create a set of candidate instances Ci, for each top-n substructure si∈  
Gn, illustrated in Figure 7.  The candidate instances represent an extension by a single 
edge and a single vertex, with one candidate instance being generated for each possible 
extension beyond the seed instance.  We then evaluate each candidate instance, cij ∈  Ci 
and keep only those where cij is still a subgraph of si.  This evaluation requires a subgraph 
isomorphism test, which is an NP-complete algorithm, but since most patterns discovered 
by Subdue are relatively small in size, the cost is negligible in practice.  For each 
candidate instance that is found to not be a subgraph of a top-n substructure, we mark the 
reference graph to indicate the failed edge and possibly a vertex that is a dead end.  This 
prevents redundant exploration in future extensions and significantly prunes the search 
space. 

In the fifth step (Figure 8), we repeatedly extend each instance, cij ∈  Ci, in all possible 
directions by one edge and one vertex.  When we reach a point where candidate instances 
remain but all edges and vertices in the reference graph have already been explored, then 
we again extend the reference graph frontier by one edge and one vertex.  After each 
instance extension we discard any instance in Ci that is no longer a subgraph of a 

Fig. 8.  The fifth and sixth steps repeatedly extend 
the set of seed instances until they are either grown 
into a substructure from St or discarded.   

Step 5: Candidate instances are
repeatedly grown by one edge and
one vertex with respect to the
reference graph and evaluated
against the set of top-n subs

C AD B B

C A G

C AX

C AD

C A

C A

...
Step 6: Repeat step 5 until the
remaining subs are exact matches to
a top-n sub; Discard any duplicates

Step 7: Update the statistics for the
current increment in light of the newly
discovered instances; Re-compute
the top-n subs if desired.



substructure in Gn.  Any instance in Ci that is an exact match to a substructure in Gn is 
added to the instance list for that substructure, Is, and removed from Ci.   

Once we have exhausted the set of instances in Ci so that they have either been added 
to a substructure’s instance list or discarded, we update the increment statistics to reflect 
the new instances and then we can recalculate the top-n set, Gn, for the sake of accuracy, 
or wait until the next increment.   

 
 

4.2.  Discovery Evaluation 
 
To validate our approach to discovery from relational streams, we have conducted two 
sets of experiments, one on synthetic data and another on data simulated for the 
counterterrorism domain.   

 
 
 
 
 
 
 
 
 
 
 
 

4.2.1  Synthetic data   
 
Our synthetic data consists of a randomly generated graph segment with vertex labels 
drawn uniformly from the 26 letters of the alphabet.  Vertices have between one and three 
outgoing edges where the target vertex is selected at random and may reside in a previous 
data increment, causing the edge to span the increment boundary.  In addition to the 
random segments, we intersperse multiple instances of a predefined substructure.  For the 
experiments described here, the predefined substructure we used is depicted in Figure 9.  
We embed this substructure internal to the increments and also insert instances that span 
the increment boundary to test that these instances are detected by our discovery 
algorithm. 

Figure 10 illustrates the results for a progression of five experiments.  The x-axis 
indicates the number of increments that were processed and the respective size in terms 

Fig. 9.  Predefined 
substructure embedded in 
synthetic data. 

A

B C

D

AB AC

BC

BD CDDA



of vertices and edges.  To illustrate the experiment methodology, consider the 15-
increment experiment.  We provided ISubdue with the 15 increments in sequential order 
as fast as the algorithm could process them.  The time (38 seconds) depicted is for 
processing all 15 increments.  We then aggregated all 15 increments and processed them 
with Subdue for the comparison.  The five results shown in Figure 10 are not cumulative, 
meaning that each experiment includes a new set of increments.  It is reasonable to 
suggest then that adding five new increments – from 15 to 20 – would require 
approximately three additional seconds of processing time for ISubdue, whereas Subdue 
would require the full 1130 seconds because of the need to reprocess all of the 
accumulated data.  Figure 11 depicts a similar set of experiments  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to the speedup achieved by virtue of the fact that ISubdue need only 

process the new increment, additional speedup is achieved because of a sampling effect.  
This is illustrated in Figure 10 where each independent experiment produces a significant 
run-time improvement for ISubdue even when processing an identical amount of data as 
standard Subdue.  The sampling effect is an artifact of the way in which patterns are 
grown from the data.  Since ISubdue is operating from smaller samples of data, there are 
fewer possible pattern instances to evaluate.  There are limiting conditions to the speedup 
achievable with the sampling effect but a full discussion is beyond the scope of this 
paper. 

 

Comparison Between ISubdue and Subdue on Synthetic Data

325

650

1130

1558

32 59494138

2347

0

500

1000

1500

2000

2500

10
 In

cr
em

en
ts

 
22

80
0V

45
47

8E

15
 In

cr
em

en
ts

34
20

0V
67

80
5 

E

20
 In

cr
em

en
ts

45
60

0V
 9

07
03

E

25
 In

cr
em

en
ts

57
00

0V
11

33
26

E

30
 In

cr
em

en
ts

68
40

0V
13

60
22

E

Number of Increments

Ti
m

e 
in

 S
ec

on
ds

ISubdue

Subdue

Fig. 10.  Comparison of ISubdue and Subue on on increasing 
number of increments for synthetic data. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.2.  Counterterrorism Data   
 

The counterterrorism data was generated by a simulator created as part of the Evidence 
Assessment, Grouping, Linking, and Evaluation (EAGLE) program, sponsored by the 
U.S. Air Force Research Laboratory.  The simulator was created by a program participant 
after extensive interviews with Intelligence Analysts and several studies with respect to 
appropriate ratios of noise and clutter.  The data we use for discovery represents the 
activities of terrorist organizations as they attempt to exploit vulnerable targets, 
represented by the execution of five different event types.  They are: 

 
Two-way-Communication: Involves one initiating person and one responding person. 

N-way-Communication: Involves one initiating person and multiple respondents. 

Generalized-Transfer: One person transfers a resource. 

Applying-Capability: One person applies a capability to a target 

Applying-Resource: One person applies a resource to a target 

Fig. 11.  A section of the graph representation of the counterterrorism data used for our evaluation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data also involves targets and groups, groups being comprised of member agents 
who are the participants in the aforementioned events.  All data is generalized so that no 
specific names are used.  Figure 11 illustrates a small cross-section of the data used in our 
experiments. 

The intent of this experiment was to evaluate the performance of our research on 
ISubdue against the performance of the original Subdue algorithm.  We are interested in 

Comparison Between ISubdue and Subdue

2252
4089

7031

10222

13628

115 174 229 275 322
0

2000
4000
6000
8000

10000
12000
14000
16000

10
 In

cr
em

en
ts

40
00

0V
46

60
9E

 

15
 In

cr
em

en
ts

60
00

0V
69

46
9E

20
 In

cr
em

en
ts

80
00

0V
92

62
5E

25
 In

cr
em

en
ts

10
00

00
V

11
62

17
E

30
 In

cr
em

en
ts

12
00

00
V

13
93

56
E

Number of Increments

Ti
m

e 
in

 S
ec

on
ds

ISubdue

Subdue

Fig. 12.  Comparison of run-times for ISubdue and Subdue on 
increasing numbers of increments for counterterrorism data. 

Fig. 13.  The top 3 substructures discovered by both ISubdue 
and Subdue for the counterterrorism data. 

TwoWayCommunication
Event

Person

respondent respondent respondent

Person

respondent respondent initiator

Person

respondent respondent

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event

TwoWayCommunication
Event



measuring performance along two dimensions, run-time and the best reported 
substructures.   

Figure 12 illustrates the comparative run-time performance of ISubdue and Subdue on 
the same data.  As for the synthetic data, ISubdue processes all increments successively 
whereas Subdue batch processes an aggregation of the increments for the comparative 
result.  Each experiment was independent as it was for the synthetic data. 

Figure 13 depicts the top three substructures consistently discovered by both ISubdue 
and Subdue for all five experiments introduced in Figure 12.  

 
 

4.3  Qualitative Analysis 
 
In this paper we have described an algorithm to facilitate complete discovery in 

connected graph data to ensure that we can accurately evaluate the prevalence of specific 
patterns, even when those patterns are connected across temporal increment boundaries.  
The basis for using Subdue is that the prevalence of patterns is important, with the 
prevalence being derived from the number of instances present in the data.  If we did not 
fully evaluate the increment boundaries, we would lose pattern instances and therefore 
patterns could not be accurately evaluated for their prevalence.   

 
 
 
 
 
 
 
 
 
 
 
 
 
To illustrate this process, we conducted an experiment using synthetic data similar to 

that described in section 4.2.1, where the increments were processed both with and 
without boundary evaluation.  The synthetic data consisted of 50 increments, each with 
560 vertices and approximately 1175 edges.  Interspersed within the random graph data 
are instances of two different patterns, illustrated in Figure 14, shown with the total 
number of instances each.  The difference is that most of the instances for the first pattern 

Fig. 14  Two patterns embedded in the random graphs in each data 
increment and spanning the increment boundary 

625 instances

A

H

D F

α β

δγ

W

Z

X Y

α β

γ ε

250 instances

g1 g2



span the increment boundaries, where all of the instances of the second pattern fall 
completely within single increments. 

We ran three separate tests on this data.  The first is a benchmark test with the original 
Subdue algorithm run over the aggregate data, which totals 53,500 vertices and 108,666 
edges.  As expected, the most prevalent pattern (g1) is reported by Subdue as the most 
prevalent with 625 instances discovered.   

The second test was run with ISubdue with boundary evaluation enabled.  Again, the 
most prevalent pattern (g1) was found with 624 instances discovered (occasionally the 
order of instance growth will result in the loss of an instance and happens for both 
Subdue and ISubdue). 

The last test was run with ISubdue with boundary evaluation disabled.  In this case, the 
second pattern (g2) is returned as the most prevalent with 250 instances discovered.  The 
first pattern (g1) was reported as the fourth best with 125 instances discovered.  The 
second-best pattern was a subset of pattern g1 and the third-best pattern was a small 
subset of pattern g2.  

Clearly this experiment illustrates the importance of including our boundary evaluation 
algorithm into the full ISubdue capability.  Without the ability to recover pattern 
instances that do not reside entirely within a single increment we sacrifice the ability to 
provide accurate discovery results. 

 
 

5.  Detecting Change 
 
Researchers from several fields, such as Machine Learning and Econometrics, have 
developed methods to address the challenges of a continuous system, like the sliding 
window approach5, where only the last n data points are used to learn a model.  Many of 
these approaches have been used with success in attribute-based data mining.  Other 
attribute-based methods, such as those involving Ensemble Classifiers6 and continuously 
updated Decision Trees7, have also been successfully demonstrated.  However, these 
methods do not easily translate into relational discovery because of the complex, 
interconnected nature of the data.  Since the data is relationally structured, it can be 
difficult to quantify the ways in which it may change over time.  For example, an 
attribute vector can be changed by altering the probability distribution of the discrete set 
of attributes.  Conversely, a relational data set may contain a collection of entities and 
relationship types that can be configured in a large number of different permutations.  For 
a diverse relational dataset, the number of unique patterns may be intractably large.  This 
makes it difficult to quantify the nature of change and so it is not straightforward to apply 
methods that rely on sampling, such as the sliding window approach. 



The remainder of this paper is devoted to describing a process by which we are able to 
compute a representative point in graph space for sequential sets of patterns discovered 
by ISubdue from successive data increments received from a continuous stream.  We can 
use these representative points in the graph space, along with a distance calculation, to 
iteratively measure the evolving set of discoveries to detect and assess change.  The 
objective of this work is to enable a method for measuring pattern drift in relational data 
streams, where the salient patterns may change in prevalence or structure over time.  
With a measure of central tendency for graph data, along with a method for calculating 
graph distance, we can begin to adapt time-series techniques to relational data streams. 

As part of our evaluation we have experimented with two different formulations for 
computing the median graphs – by aggregating sequential sets of local discoveries and by 
considering the evolving sets of globally-ranked discoveries.  Each is discussed below.   

 
 

5.1. Error-correcting graph isomorphism 
 
The ability to compute the distance between two graphs is essential to our approach for 
detecting and measure change in incremental discoveries.  To compute this distance we 
rely on the error-correcting graph isomorphism (ecgi)8.  An ecgi is a bijective function, f, 
that maps a graph g1 to a graph g2, such that:  

 
 
 

where V1 and V2 are the vertices from graphs g1 and g2, respectively.  The ecgi function, 
f(v) = u, provides vertex mappings such that 1Vv ′∈  and 2Vu ′∈ , where 1V ′  and 2V ′  are the 
sets of vertices for which a mapping from g1 to g2 can be found.  The vertices 11 V- V ′  in g1 
are deleted and the vertices 22 V- V ′  in g2 are inserted.  A cost is assigned for each deletion 
and insertion operation.  Depending on the formulation, a direct substitution may not 
incur cost, which is intuitive if we are looking to minimize cost based on the difference 
between the graphs.  It should be noted that the substitution of a vertex from g1 to g2 may 
not be an identical substitution.  For instance, if the vertices have different labels, then the 
substitution would be indirect and a cost would be incurred for the label transformation. 

The edit operations for edges are similar to those for vertices.  We again have the 
situation where the edge mappings may not be identical substitutions.  The edges may 
differ in their labeling as well as their direction. 

Figure 15 illustrates the mapping of vertices from graph g1 to g2.  Vertex substitutions 
are illustrated with dashed lines in Figure 15.b, along with the label transformation.  
Figure 15.c depicts the edge substitution, deletion and insertion operations.  

221121 VVVVVV:f ⊆′⊆′′→′     ;      ;



 
 
 
 
 
 
 
 
 
 
 
 
 
The ecgi returns the optimal graph isomorphism, where optimality is determined by the 

least-cost set of edit operations that transform g1 to g2.  The costs of edit operations can 
be determined to suit the needs of a particular application or unit costs can be assigned. 
The optimal ecgi solution is known to be NP-complete and is intractable for even 
relatively small graphs.  In the following sections we discuss an approximation method 
for the ecgi calculation. 

 
 

5.2. Graph metrics 
 

The objective of this work is to develop methods for applying metrics to relational data 
so that we can quantify change over time.  At the heart of almost all statistical analysis 
techniques is a measure of central tendency for the data sample being evaluated.  The 
most prevalent of such measures is the mean.  By definition, a mean is the point where 
the sum of all distances from the mean to the sample data points equals zero, such that: 

 
 
 

where ∆xi is the distance from the mean to data point xi.  This definition can be rephrased 
to say that an equal amount of variance lies on each side of the number line from the 
mean.  Unfortunately there is no straightforward translation of this definition into the 
space of graphs, since there is no concept of positive and negative that can be applied 
systematically.  A mean graph was defined in Bunke and Guenter 20019, but only for a 
single pair of input graphs.  This is possible because a mean graph can be found that is 
equidistant from the two input graphs, which causes it to satisfy the form of a statistical 

0
1

=∆�
=

n

i
ix

Fig. 15.  Example of error-correcting graph 
isomorphism function mapping g1 to g2. 

A

B C

g1 g2
g1 g2

A

B D

A

B C

A

B D

� φ �

Cost incurred for
label transformation

g1 g2

A

B C

A

B D

�

Edge insertion cost

Edge deletion cost

�
�

�

(a) (b)

(c)

φ

φ

φ

φ

φ



mean.  There does not appear to be a way to define a mean graph for multiple input 
graphs that would satisfy the form or variance requirements of a statistical mean. 

Fortunately, it is possible to compute a median graph8, which is another common 
measure of central tendency.  There is an analogous definition between the median graph 
and the statistical median.  A statistical median is the point on the number line where 
exactly half of the data points lie below and half lie above.  This also happens to be the 
point that gives us the minimum sum of distances, which is the sum of the distance from 
the median to each data point.  No other point can be chosen with a smaller sum of 
distances.  Although there is no concept of above and below in graph space, we can rely 
on the sum of distances to provide a mechanism for computing a median graph.  Equation 
4 formalizes this notion.    

 
 
 
The median graph, ĝ , is a graph that minimizes the sum of distances to all n input 

graphs and U is the universe of graphs that can be generated from the available labels.   
The ecgi defined above provides a method to measure a potential median for its 

proximity to the input graphs.  To deal with the intractability of computing the ecgi 
between a candidate median graph and multiple input graphs, a stochastic approximation 
technique was introduced in Jiang et. al 20018, which relies on a genetic algorithm10 to 
reduce the search space for optimal graph transformations.  The genetic algorithm uses a 
chromosome to represent a vertex mapping from a potential median graph to the input 
graphs.  The fitness function completes the mapping by finding an optimal vertex label 
mapping, edge mapping, and edge label mapping.  The process of computing the fitness 
of a chromosome is the process of inducing an optimal median graph based on the vertex 
mapping in the chromosome and the input graphs.  The genetic algorithm approach 
reduces the problem complexity to quadratic time and although it is an approximation 
technique, in practice it produces near optimal results.  In the following section we 
introduce our modifications to the fitness function needed to address the issue of 
weighting discovered patterns so that they appropriately influence the median graph 
induction.   

 
 

5.2.1.  Weighting patterns   
 
Our purpose for computing the median graph is to summarize a set of discovered 
patterns.  We perform this summarization over the sets of patterns discovered by ISubdue 
as data is incrementally processed.  In order to compute a median graph that is 

�
=∈

=
n

iU
ˆ ),(dminarg

1
i

gg
g

g (4) 



representative of the reported patterns, we must weight the computation process by the 
relative strength of each pattern.  Consider the set of patterns, G, and their respective 
metrics, reported for a series of increments. 

 
 
 

Where gj is the pattern, nj is the number of instances, and ij is the increment data (size = 
|Vj| + |Ej|). 

For the purposes of illustration, assume the graphs {g1, g2, g3} were discovered in 
three distinct data increments, {i1, i2, i3}.  The metrics needed for weighting patterns are 
then: 

 
|g1| = 10; n1 = 30; |i1| = 5200 
|g2| = 10; n2 = 20; |i2| = 6800 
|g3| = 10; n3 = 25; |i3| = 6000 

 
The aggregate size for a pattern is simply the size of the pattern multiplied by the 

number of instances, |gj| * |ij|.  We normalize the aggregate size value relative to the size 
of the increments in which the pattern was discovered and the overall size of all 
increments for which we are computing the median graph.  The normalized aggregate 
size is computed using Equation 5. 

 
 
 
 
We can then weight each pattern using Equation 6. 
 
 
 
 
 
 
For the patterns described above, the normalized aggregate sizes would be calculated 

using Equation 5 as follows: 
 
 
 
 

{ })()(),(),( 333222111 mmm ininininG  , ,g, ... , , ,g , ,g , ,g=

( )||||

||

||
)(

1

jjm

k
k

j
j n

i

i
size ∗∗=

�
=

gg (5) 

�
=

=
m

i
i

j
j

size

size
w

1

)(

)(
)(

g

g
g (6) 



 
 
 
 
 
 
 
 
The respective weights would then be calculated using Equation 6 as follows: 
 
 
 
 
 
 

Naturally these weights sum to one. 
Now that we have the weights, our objective is to scale the cost values used in the 

genetic algorithm’s fitness function so that the relative strength of each pattern has its 
respective influence on the median graph.  The genetic algorithm uses its fitness function 
to determine the cost of mapping a potential median graph to the input graphs.  Figure 16 
illustrates a median graph that was induced from weighted input graphs.  For each 
potential edge configuration of the median graph, the cost is computed as follows: 

 
 
 

where ces is the edge substitution cost from the median graph edge to the respective edge 
in the input graph.  Each possible edge configuration for the median graph is evaluated 
with this weighted cost function and the one with the least cost is selected, which is 
shown in the figure.  In this case, since input graph (a) is heavily weighted, it is less 
costly to transform the corresponding edge for both of the input graphs (b) and (c) than to 
transform an alternate configuration for (a). 

 
 
 
 
 
 
 

340
837687

83

310
837687

76

350
837687

87

3

2

1

.)(w

.)(w

.)(w

≈
++

=

≈
++

=

≈
++

=

g

g

g

( )

( )

( ) 832510
600068005200

6000

762010
600068005200

6800

873010
600068005200

5200

3

2

1

≈∗∗
++

=

≈∗∗
++

=

≈∗∗
++

=

)(size

)(size

)(size

g

g

g

A1

B2

A1

B2

A1

B2

Input graphsMedian graph

(a) (b)

A1

B2(c)
0.6 0.2 0.2

Fig. 16.  Mapping costs are weighted based on 
pattern prevalence 

c
es

b
es

a
es c.c.c. ∗+∗+∗= 202060cost



5.3. Change-detection evaluation 
 
The purpose of computing a median graph that represents the best patterns for a set of 
increments is so that we have points for comparison across a large time span without the 
computational burden of comparing every discovered pattern from every increment.  A 
secondary benefit is that a median graph is less susceptible to anomalies that might 
appear in local data increments, making it more useful for analyzing broader trends.   

 
 

5.3.1. Measuring Similarity 
 
We previously defined the ecgi as a measure of graph distance, but a single numerical 
distance metric is insufficient for analytical purposes.  By definition, relational data is 
constructed of entities and relationships corresponding to vertices and edges in graph 
configurations.  At a minimum we require a similarity metric for both dimensions. 

To measure a degree of change along these dimensions, we first set the cost of all edit 
operations to unit cost and we can then define the maximum possible change between 
two graphs along each dimension as simply the larger number of vertices and edges, 
respectively, from the two graphs.  We base our similarity measure on a graph distance 
metric derived from the maximal common subgraph11 (mcs), shown in Equation 7. 

 
 
 
 
Any disjoint areas of the two graphs incur an error-correction cost in the ecgi.  When 

the edit costs are set to unit value, the total incurred cost is the compliment of the size of 
the maximal common substructure.  Therefore a measure of dissimilarity between two 
graphs g1 and g2 can be computed on each dimension as follows:  

For g1 = (V1, E1) and g2 = (V2, E2), where V is the vertex set and E ⊆ V×V is the edge 
set, the vertex distance between the two graphs can be computed using Equation 8.  

 
 
 
 
 
Where k1 is the number of vertex substitutions from graph g1 to g2, k2 is the number of 

vertex deletions from g1 and k3 is the number of vertex insertions into g2.  It follows 
intuitively that k1 + k2 + k3 = max(|V1|,|V2|) and if there is no common substructure in the 

( ) ( ) ( )

|)||,max(|

,

),(
21

111
21

321

VV

vcucvuc

VVd

k

j
jvi

k

j
jvd

k

j
jvs ���

===

++

=
(8) 

( )21

21
21 gg

g,g
g ,g

,max

)(mcs
)(d −= 1 (7) 



two graphs, then the costs will sum to equal max(|V1|,|V2|) and d(V1, V2) = 1.  The cost 
functions are defined as follows. 

 
• cvs(uj, v): cost of substituting vertex uj from graph g1 to vertex v in graph g2.  

The cost includes the label transformation costs. 
• cvd(uj): cost of deleting vertex uj from graph g1 
• cvi(vj): cost of inserting vertex vj into graph g2 

 
 
 
 
 
 
The edge metric is calculated similarly to the vertex distance, where m1 is the number 

of edge substitutions from graph g1 to g2, m2 is the number of edge deletions from g1 and 
m3 is the number of edge insertions into g2.  Then m1 + m2 + m3 = max(|E1|,|E2|) and if 
there is no common substructure in the two graphs, then the costs will sum to equal 
max(|E1|,|E2|) and d(E1, E2) = 1.  The cost functions are defined as follows. 

 
• ces((u1

j, u2
j), (v1, v2)): cost of substituting edge (v1, v2) in graph g2 with edge 

(u1
j, u2

j) from graph g1.  The cost includes the label transformation costs. 
• ced(u1

j, u2
j): cost of deleting edge (u1

j, u2
j) from graph g1 

• cei(v1, v2): cost of inserting edge (v1, v2) in graph g2 
 
Using these cost calculations, we are able to provide a distance measure along both 

vertex and edge dimensions as well as the overall graph distance metric. 
 
 
 
 
 
 
 
 
 
 
 
 

( ) ( )( ) ( ) ( )
|)E||,Emax(|

v,vcu,ucv,v,u,uc

)E,E(d

m

j

jj
ei

m

j

jj
ed

jj
m

j
es

21

1
21

1
212121

1
21

321

���
===

++

=
(9) 

A

H

D F

α β

γ δ

B

I

E F

α β

γ ε

1-5 6-10

(a) (b)

A

I

E F

α β

γ δ

J

Q

M O

α β

θ ι

K

R

N O

α β

κ

16-20 21-25

(d) (e)

J

R

N O

α β

θ ι

ĝĝ

C

I

E G

α β

γ ς

11-15

(c) L

R

N P

α β

λ

26-30

(f)

ι θ θ

Fig. 17.  Synthetic data contains six unique substructures and two alternating 
cycles.   



5.3.2.  Synthetic data 
 
To illustrate the use of a median graph and the similarity measure, we have created a 
synthetic, continuous dataset containing a set of patterns that appear cyclically over time.  
The data was designed with the counter-terrorism problem in mind, where there are often 
a larger number of entities (people, places, etc) connected with a relatively few number of 
unique relationship types.  The experiment was conducted over 165 data increments, each 
containing 550 vertices and approximately 1100 edges.  Each increment has embedded 
within it 10 instances of one of the six patterns from Figure 17.   

The figure illustrates the patterns embedded within the first 30 increments along with 
an example of a median graph computed for a 15-increment set.  Some of the increments 
have five instances of the pattern that span across the increment boundary.  For the 
purposes of clear illustration, we only varied the embedded patterns by their labeling, 
which represents a shift in entities for vertex label changes and a shift in relationships for 
edge label changes. 

The majority of the graph data within each increment is random, with (26 + 262) 
unique vertex labels drawn from the set �v = {A, B, C, …, Z}, where labels are one or 
two characters long.  The two-character labels are a random concatenation of the set 
members.  Edges are selected randomly from the set �E = {�, �, �, �, �, ς, �, �, �, 	, λ}.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.2.1.  Measuring local discoveries 
 

Figure 18 illustrates one potential approach to the problem formulation, where each new 
data increment is evaluated using ISubdue, giving us a relational pattern that is locally-

Fig. 18  As local increments are processed serially, a sequence of prevalent patterns is collected 

kĝ iˆ +kg



best in the new increment.  These locally-discovered patterns are used to refine the 
globally-best pattern using the methods described above.  We can assess change by 
computing median graphs using aggregated sets of these locally-best patterns received 
over time, such as the two sets depicted in Figure 18.  Each pattern is weighted based on 
its strength relative to the increment in which it is discovered and the set of increments 
with which it is grouped.  We then use the graph metrics described above to compute 
representative points for sets of local discoveries so that we can measure the change over 
time. 

Using the synthetic data generator described above, we collected sets of the single 
locally-best pattern discovered in each increment.  For this experiment, we aggregated the 
best local discovery from each of 15 increments for the computation of each median.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19 illustrates the distance between each median graph and its successor, which 

is a drift measurement of one group of 15 increments to the next group of 15.  For this 
experiment, there is a significant transition in terms of the overall graph distance.  Each 
median differs from the next by a normalized distance of 0.75.  The pairwise vertex and 

d(g1,g2) d(g2,g3) d(g3,g4) d(g4,g5) d(g5,g6) d(g6,g7) d(g7,g8) d(g8,g9) d(g9,g10)
0

0.2

0.4

0.6

0.8

1

Change in Pattern Structure Over Time

N
or

m
al

iz
ed

 D
is

ta
nc

e

Fig. 19.  Each 3-bar set depicts the total graph distance, vertex distance and edge 
distance, respectively 



edge distances for each comparison are also shown, where the vertex distance is the 
maximum of 1.0, representing a complete shift but only half of the edges transition.  For 
many domain problems, characterizing the change along different dimensions is 
important.  For example, in the counter-terrorism domain, analysts would want to know if 
the people involved in a particular threat pattern have changed or if the behavioral pattern 
involving known terrorists has changed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
By phase-shifting the comparison between medians, we can identify potential cycles in 

the data.  Figure 20 illustrates another pairwise comparison for the same synthetic data, 
where each median is compared to its second successor, e.g. median 1 is compared to 
median 3, etc.  We see the distances in most cases drop to 0 and the remaining distances 
are insignificant, a result of minor variations in the medians caused by pattern weights. 

In practice the number of increments represented by each median might be selected 
through an iterative search process or be modified to find precise drift boundaries once a 
cycle has been detected.  However, the selection of the set size might be overly 
influential on the efficacy of the median comparison.  The median might also be unduly 
influenced by minor variations in the rankings of local discoveries.  We describe an 
alternative formulation below. 

 
 
 
 
 
 
 

Fig. 20.  By phase-shifting the median comparison we can detect cycles in the data 

d(g1,g3) d(g2,g4) d(g3,g5) d(g4,g6) d(g5,g7) d(g6,g8) d(g7,g9) d(g9,g11)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Change in Pattern Structure Over Time

N
or

m
al
iz
ed

 D
is
ta

nc
e



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.2.2.  Measuring globally-ranked patterns 
 

Since the process of incremental discovery that we defined in sections 3 and 4 will 
continuously update the set of top-n globally-best patterns (the n best patterns discovered 
so far, where n is specified by the user), we can compute the median over these evolving 
pattern sets and measure the drift or detect cycles as described above.  Each pattern in the 
ordered set would be weighted with the same process we described in section 5.2.1, based 
on its prevalence and the size of the increment in which it was discovered.  Medians are 
computed for the new globally-best list of patterns after each new increment is processed, 
but could also be computed on some larger interval (e.g. every five increments).  Figure 
21 illustrates this concept.   

Using the synthetic data generator described above, we collected the complete set of 
globally-best patterns that were available after each new increment was processed and 
then computed a median graph for each.  Each set of globally-best patterns contained 
every pattern that had been discovered up to that point in the ISubdue discovery process 
(no limiting n-value was specified).  Alternatively, we could have truncated the list by 

Time

Global top-n
at time k

Global top-n
at time k+i

Global top-n
at time k+i+j

kĝ ikg +ˆ jikg ++ˆ

Measure drift and detect
cycles by evaluating

median distance

Fig. 21.  The median-graph change detection process can be 
applied to the evolving set of globally-best top-n patterns to 
measure the drift or detect cycles 



keeping only the best n patterns.  The median graph was then computed using the 
weighting method described in section 5.2.1 so that each pattern on the globally-best list 
contributed to the median in proportion to its representation in the aggregate data.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22 illustrates the pairwise distance comparison between each median and its 

immediate successor for the 200 increments processed in this experiment.  Initially, the 
distance comparisons appear somewhat erratic.  This is because it takes some time for the 
globally-best set of patterns to stabilize.  Although each increment has the same number 
of vertices and nearly the same number of edges, the vertex and edge labels are assigned 
randomly.  This means that the way in which patterns are grown by the core Subdue 
algorithm for the local data in each increment can produce some randomness in the local 
discoveries.  The best pattern discovered in each local increment is always as expected, 
but the non-best discoveries (2nd, 3rd, etc) are often subsets of the best pattern and these 
can vary with respect to the way in which the instances are grown, due to variance in the 
data.  Within the first few cycles of the data, these variations will influence the median 
until a representative sample of these non-best patterns has been accumulated and their 
influence has been averaged out.  As Figure 22 clearly indicates, this noise begins to fall 
out as time goes on and clear cycles can be observed. 

For this synthetic data, both formulations yield information that indicates the presence 
of a data cycle. 

 
 
 

Fig. 22.  Distance between median graphs computed for successive 
sets of globally-best patterns.  Distance shown for total graph only. 

Graph Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196

Pairwise distance measure between median and its 
immediate successor

N
or

m
al

iz
ed

 D
is

ta
nc

e

Cycles emerge as 
global list stabilizes



5.3.3.  Domain Experiments 
 

We conducted a second set of experiments using the counter-terrorism data generated by 
the simulator described in section 4.2.2.  For this experiment we used data generated by 
the simulator for threat groups – groups known to engage in terrorist activity.  Each group 
is represented by a graph structure that aggregates a collection of member agents, which 
are then associated with specific capabilities and resources.  Groups may also be 
associated with specific operational modes, which are collections of capabilities and 
resources.  To illustrate trend detection, we selected the first four threat group cases from 
five different datasets and repeated this process seven times to generate 350 increments 
totaling 85,670 vertices and 66,041 edges.  Increments were limited to 500 vertices plus 
their edges, causing group graphs to be severed so that they spanned increment 
boundaries.  Medians were computed for the evolving set of globally-best patterns using 
the same process described above.  Figure 23 illustrates an example of a pattern 
discovered from the threat group data.  This pattern represents a particular operating 
mode for a group, involving two capabilities and one resource. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.3.1  Measuring local discoveries 
 

We again first computed median graphs over 5-increment aggregates of locally-best 
discoveries.  Figure 24 illustrates the pairwise distance comparisons between the current 
increment and its immediate successor, computed with the similarity measure from 
section 6.1.  These values reflect a drift over the vertex and edge dimensions for 10 
successive increments.  Figure 24 illustrates two full cycles through the data, where the 
first six data points represent the first cycle and the last six represent the second cycle.  

Fig. 23.  An example of a discovered pattern from the 
counterterrorism Threat Group data 

Mode

Ca-120 Ca-136 Re-55

mod
eC

ap
ab

ili
ty

m
od

eC
ap

ab
ili

ty modeResource



The center (seventh) data point is the pivot point, where the last median from the first 
cycle is measured against the first median of the second cycle.  The two cycles are 
separated and overlaid in the graphic for illustrative purposes.  A cycle could be detected 
in the same manner as illustrated for the synthetic data experiment, where pairwise 
distances are continually computed with a phase shift until we find a precipitous drop in 
the measurements.  In this case, when the median g1 was compared to median g8 the 
distance would be zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 24.  The two cycles depicted in Figure 17 are separated and overlaid 
for illustration 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 D
is

ta
nc

e

d(g8,g9)     d(g9,g10)  d(g10,g11) d(g11,g12) d(g12,g13) d(g13,g14)  

0

0.2

0.4

0.6

0.8

1

Change in Pattern Structure Over Time

N
or

m
al

iz
ed

 D
is

ta
nc

e

d(g1,g2)       d(g2,g3)    d(g3,g4)   d(g4,g5)     d(g5,g6)    d(g6,g7)  d(g7,g8) 



5.3.3.2.  Measuring globally-ranked patterns 
 

Figure 25 depicts the successive pairwise graph distance comparison between the 
medians computed for the globally-best pattern sets, where the distance is between the 
median for the current globally-best pattern set and the median for the pattern set from 
the prior time step.  The median graph is recomputed after each new increment is put 
through the discovery process and the global pattern list is updated.   

 
 
 
 
 
 
 
 
 
 
 
 
 
In this case, the median graph stabilizes quickly and the distance measures drop to 

zero.  This experiment behaved differently from the synthetic data experiment because 
the patterns that comprise the globally-best set are diverse and not equally represented, 
which allowed the globally-best list to converge to a specific median graph early in the 
sequential processing.  The oscillation we see in the synthetic data experiment is an 
artifact of the similarity among the embedded patterns and the identical strength of each.  
For the synthetic experiment, as each new increment is processed, the median is 
influenced in an oscillating fashion.   

The experiments discussed in this paper are for relational data streams containing 
pattern cycles, chosen for illustrative clarity.  We have also conducted a number of 
experiments where our approach accurately measures various rates of pattern drift over 
time. 

 
 

5.3.4  Contrasting approaches 
 

The work we have presented here regarding change detection in relational data streams is 
meant to serve as an entry point into the topic.  To gain some perspective on the depth of 

Graph Distance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 26 51 76 101 126 151 176 201 226 251 276 301 326

Pairwise distance measure between median and its 
immediate successor

N
or

m
al

iz
ed

 D
is

ta
nc

e

Fig. 25.  Distance between median graphs computed for successive 
sets of globally-best patterns.  Distance shown for total graph only. 



this challenge, consider the field of Time Series Analysis12, which has evolved over the 
span of decades and is built upon a foundation of statistical analysis methods for 
numerical data.  Time Serious Analysis provides many techniques for numerical data that 
each can reveal specific types of information about time-series data.  We have presented 
two possible formulations for computing the median graph from relational data streams − 
using sequentially-discovered sets of local patterns and using the evolving set of global 
patterns − each with a range of value.  There are many other formulations, such as sets of 
local pattern discoveries or a sliding window of local or global pattern discoveries.   

As we have seen with the two approaches presented here, neither provides all of the 
interesting information under all conditions.  For example, the experiment depicted in 
Figure 25 does not reveal the presence of a cycle but does reveal that the cycle isn’ t 
significant enough to change the overall global pattern ranking.  As part of our ongoing 
work, we seek to develop a mapping of which formulations can reveal which information 
and under what circumstances.  This will allow us to use various formulations in 
conjunction with one another to reveal as much information as possible, much like time-
series techniques for numerical data. 

 
 

6.  Conclusions and Future Work 
 
In this paper we have described an algorithm for relational pattern discovery from data 
streams when the data is connected across increment boundaries.  We have also described 
a method for change detection in graph-based data and contrasted two formulations for 
the change-detection process.  Each algorithm has been empirically demonstrated to be 
effective on both synthetic and domain data. 
 
6.1.  Increment Size 

 
We have learned from our experimentation that the size of the data increments must be 
chosen with some care.  If data increments are too small, then the local discovery process 
we use as a precursor to our boundary evaluation may be overly biased to incomplete 
patterns.  In practice, it is often possible to select an appropriately sized increment 
boundary given some knowledge about the domain.  However, there are situations where 
the data may obey irregular cycles and therefore the increment size shouldn’ t be set to a 
fixed size.  In our future work we intend to explore statistical and information theoretic 
measures for dynamically selecting an increment size. 

 
 



6.2.  Formalizing relational change detection 
 

In this paper we have built upon our work in relational data mining from continuous 
streams to demonstrate how a measure of central tendency for graph data, along with a 
two-dimensional metric for describing the distance between two graphs, can be used to 
detect and analyze certain types of change in relational data mined from a continuous 
stream.  We have illustrated the applicability of our method on both synthetic and 
domain-specific data. 

The ability to identify changes in relational data streams opens several significant 
research questions.  First, we wish to develop rigorous analogues to traditional statistical 
techniques that are applicable to graph-based data and that are mathematically sound 
when using the median as a measure of central tendency.  Another significant question is 
how to adapt the discovery process once we identify a particular drift characteristic.  
Since the nature of change within relational data systems is more complex, due to the 
diverse interconnection of entities, it is not clear whether general methods can be 
developed for adapting the discovery process to pattern drift.  We are exploring whether 
there are general data characteristics that, if known, can guide the drift adaptation process 
or if the response must be domain dependent.   

Finally, as described in section 5.3.4, there is much additional work to be done to 
assess the applicability and limitations of various formulations of the median graph 
computation.   

 
 

6.3.  Divergence Measures 
 

In previous work13 we briefly explored an information-theoretic divergence measure 
known as Relative Entropy as an alternative divergence measure.  Initial evaluation led us 
to believe that this approach was not widely applicable to situations where we needed to 
measure divergences between data represented by disparate patterns, however it does 
provide a sound measure of divergence for data sets represented by a different frequency 
of the same pattern.  This is but one similarity measure among many.14  In future work, 
we intend to explore a range of statistical and information-theoretic measures that may be 
applicable to evaluating pattern drift in relational data streams. 

 
 
 
 
 



6.4.  Acknowledgements 
 
This research is sponsored by the Air Force Research Laboratory (AFRL) under contract 
F30602-01-2-0570.  The views and conclusions contained in this document are those of 
the authors and should not be interpreted as necessarily representing the official policies, 
either expressed or implied, of AFRL or the United States Government. 

 
 

7.  References 
 
1. Holder, L., Cook, D., Gonzalez, J., and Jonyer, I.  2002.  Structural Pattern 

Recognition in Graphs.  In Pattern Recognition and String Matching, Chen, D. and 
Cheng, X. eds.  Kluwer Academic Publishers.   

2. Rissanen, J. 1989.  Stochastic Complexity in Statistical Inquiry.  World Scientific 
Publishing Company, 1989. 

3. Coble, J., Rathi, R., Cook, D., Holder, L.  Iterative Structure Discovery in Graph-
Based Data.  In the International Journal of Artificial Intelligence Tools, Volume 14, 
No. 1 & 2, 2005. 

4. Cook, D. and Holder, L. 1994.  Substructure Discovery Using Minimum Description 
Length and Background Knowledge. In Journal of Artificial Intelligence Research, 
Volume 1, pages 231-255. 

5.  Widmer, G.. and Kubat, M.  Learning in the Presence of Concept Drift and Hidden 
Contexts. Machine Learning, 23, 69-101, 1996. 

6.  Wang, H., Fan, W., Yu, P. and Han, J.  Mining Concept-Drifting Data Streams 
Using Ensemble Classifiers.  In the 9th ACM International Conference on 
Knowledge Discovery and Data Mining, 2003. 

7.  Hulten, G., Spencer, L. and Domingos, P.  Mining Time-Changing Data Streams.  
Proceedings of the 7th ACM SIGKDD Confereence on Knowledge Discovery and 
Data Mining, 2001. 

8.  Jiang, X., Münger, A., Bunke, H.  On Median Graphs: Properties, Algorithms, and 
Applications, IEEE Trans. on Pattern Analysis and Machine Intelligence. 23 (10), 
2001, 1144 – 1151. 

9.  Bunke, H. and Guenter, S.  Weighted Mean of a Pair of Graphs.  Computing, 
Volume 67:3, 2001, pp. 209 - 224. 

10. Russell S. and Norvig P.  Artificial Intelligence: A Modern Approach, 2nd Edition.  
Prentice Hall Series in Artificial Intelligence. Englewood Cliffs, New Jersey, 2002 

11. Bunke, H.  Recent Developments In Graph Matching. Proceedings of the 15th 
International. Conference. on Pattern Recognition, Barcelona, 2000, Vol 2, 117 – 
124. 



12. Brockwell, J. and Davis, R.  Introduction to Time Series and Forecasting, 2nd 
Edition.  Springer-Verlag, New York, NY, 2002. 

13. Coble, J., Relational Discovery in Sequentially-Connected Data Streams: Efficient 
Algorithms for Lossless Pattern Discovery and Change Detection. University of 
Texas at Arlington, Doctoral Dissertation, May 2005. 

14. Lee, L.  Measures of Distributional Similarity.  Proceedings of the 37th Annual 
Meeting of the Association for Computational Linguistics, 1999, 25 – 32 

 


