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1 Introduction 
 
For concept learning systems, data representation is crucial. A good representation might make 
possible the learning of a concept that was not learnable using other representations. For example, 
in the case of the earthquake domain (earthquake data such as its location, epicenter, intensity, 
depth, type, etc.) we can just use an attribute-value representation. However, we are missing 
important information such as the distance between the earthquakes’  epicenters and the difference 
in time between the earthquakes. This information is lost in an attribute-value representation; 
information that could make possible the learning of an important concept. 

In the case of ILP systems, data is represented in First-Order Predicate Calculus (FOPC) in 
the form of Prolog logic programs. This representation supports structural relations. ILP systems 
have been successful in structural domains: Progol in the Chemical Carcinogenicity domain [8] 
and FOIL for learning patterns in Hypertext domains [6]. Graphs are also a data representation that 
allows for structural relations. Besides being very flexible, graphs can also represent FOPC using 
conceptual graphs as introduced by John Sowa [7]. 

In this research, we present a graph-based concept learning system. A graph-based concept 
learning system uses graphs to represent the examples of the concept to learn. It also uses graph 
operations to verify if an example belongs to a concept or not, and to create new concepts. Then, 
the search space is composed of graphs.  Here, we focus on the application of our system to the 
predictive toxicology database. 
 

2 Graph-Based Discovery 
 
In a graph-based approach, the domain (a database) is described using graphs. These graphs 
become the input to the graph-based discovery algorithm, which uses a heuristic to choose the 
sub-graphs that are considered important or discovered knowledge. These issues will be discussed 
in more detail in this section, where we present a graph-based relational learning approach. 
 



2.1 The Subdue System 
 
Subdue [2] is a relational learning system used to find substructures (subgraphs) that appear 
repetitively in the graph representation of databases. Subdue starts by looking for the substructure 
that best compresses the graph using the Minimum Description Length (MDL) principle [5], 
which states that the best description of a data set is the one that minimizes the description length 
of the entire data set. In relation to Subdue, the best description of the data set is the one that 
minimizes I(S) + I(G|S), where S is the substructure discovered in the input graph G, I(S) is the 
length (number of bits) required to encode S, and I(G|S) is the length of the encoding of graph G 
after being compressed using substructure S, i.e., every instance of S in G is replaced by a single 
vertex.  

After finding the first substructure, Subdue compresses the graph and may iterate to repeat the 
same process. Subdue is able to perform a polynomial-time inexact match that allows the 
discovery of substructures with slight variations. Another important characteristic of Subdue is 
that it allows the use of previous knowledge in the form of predefined substructures. The 
following sections describe Subdue’s capabilities in detail. 
 

2.2 Knowledge Representation 
 
The model representation used by Subdue is a labeled graph. Objects are represented by vertices, 
while relations are represented by edges. Labels are used to describe the meaning of edges and 
vertices. When we work with relational databases, each row can be considered as an event and 
attributes as objects. Events may also be linked to other events through edges. The event attributes 
are described by a set of vertices and edges, where the edges identify the specific attributes and the 
vertices specify the value of that attribute for the event. A graph representation is flexible enough 
to permit having more than one possible representation for a given domain, allowing the 
researcher to experiment to get the best representation for the domain. As an example of the graph 
representation that we are using see figure 3 in section 4.  
 

2.3 Search Method 
 
Subdue uses a computationally-constrained beam search to find substructures. A substructure is a 
subgraph contained in the input graph. The algorithm starts with a single vertex as the initial 
substructure and at each iteration expands the instances of that substructure by adding an edge in 
every possible way, generating new substructures that might be considered for expansion. The 
search method can also be biased using background knowledge (i.e., substructures that we think 
may exist in the data, but that we want to study in more detail) provided by the user. In this case, 
the user gives the background knowledge substructures as input to Subdue. Subdue finds the 
instances of the background knowledge substructures in the input graph and then continues 
looking for expansions of those substructures. 



3 Graph-Based Concept Learning 
 
The main challenge in adding concept-learning capabilities to Subdue is the inclusion of 
“negative”  examples into the process. Substructures that describe the positive examples; but not 
negative examples, are likely to represent the target concept. Therefore, the Subdue concept 
learner (which we will refer to as SubdueCL) accepts both positive and negative examples in 
graph format. 

Since SubdueCL is an extension to Subdue, it uses Subdue’s core functions to perform graph 
operations, but the learning process is different. SubdueCL works as a supervised learner by 
differentiating positive and negative examples using a set-covering approach instead of graph 
compression. The hypothesis found by SubdueCL is a disjunction of conjunctions (substructures), 
i.e., the concept may contain several rules. SubdueCL forms one of these conjunctions (rules) in 
each iteration. Positive example graphs that are described by the substructure found in a previous 
iteration are removed from the graph for subsequent iterations. 

 

3.1 Substructure Evaluation 
 
The way in which SubdueCL decides if the substructures (or rules) will be part of the concept or 
not is also different from Subdue. SubdueCL uses an evaluation formula to give a value to all the 
generated substructures. This formula assigns a value to a substructure according to how well it 
describes the positive examples (or a subset of the positive examples) without describing the 
negative examples. Then, positive examples covered by the substructure increase the substructure 
value while negative examples decrease its value. In this formula the positive examples that are 
not covered and the negative examples covered by the substructure are considered errors, because 
the ideal substructure would be one covering all the positive examples without covering any 
negative example. Then, the substructure value is calculated as follows: 
 

Errorvalue −= 1  
 

where the error is calculated with respect to the positive and negative examples covered by the 
substructure using the following formula: 
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Using this formula, SubdueCL chooses rules that maximize the substructure’s value, and in 
this way it minimizes the number of errors made by the substructures used to form the concept. 
The positive examples not covered by the substructure and the negative examples covered by the 
substructure are considered errors. #PosEgsNotCovered is the number of positive examples not 
covered by the substructure, and #NegEgsCovered is the number of negative examples covered by 
the substructure. #PosEgs is the number of positive examples remaining in the training set 
(positive examples already covered in a previous iteration were removed from the training set), 
and #NegEgs is the total number of negative examples. This number does not change, because 
negative examples are not removed from the training set.  For hypotheses with the same error, 
those covering more positive examples are preferred. 



 

3.2 SubdueCL Algor ithm 
 
The SubdueCL algorithm is shown in figures 1 and 2. The main function takes as parameters the 
positive examples Gp, the negative examples Gn, the Beam length (since SubdueCL’s search 
algorithm is a beam search), and a Limit on the number of substructures to include in its search. 
The main function makes calls to the SubdueCL function in order to form the hypothesis H that 
describes the positive examples. 

 
Figure 1.  SubdueCL’s main algorithm. 

 
A substructure is added to H each time that the SubdueCL function is called. In the case that 

SubdueCL returns NULL, the Beam is increased by a 10% so that a larger search space can be 
explored during SubdueCL’s search. We chose to increase the beam by 10%, because that value 
was enough to find a substructure in the next iteration in most experiments. Also, after SubdueCL 
finds a substructure, the positive examples covered by it are removed from the positive graph. 

Figure 2 shows the SubdueCL function, which starts building a ParentList creating a 
substructure for each vertex in the graph with a different label, but keeping only as many 
substructures as the length of the Beam. The “mod Beam”  qualifier means that the lists keep only 
as many substructures as the Beam size. Each of those substructures in the parent list is then 
expanded by one edge or one vertex and an edge in all possible ways and evaluated according to 
equation 3.2 presented earlier. Those substructures that cover at least one positive example are 
kept in the BestList, but limited to the Beam size. A ChildList keeps all the substructures that were 
obtained from the expansion of the substructures in the ParentList and is also limited by the Beam 
size. 
 

Main(Gp, Gn, Limit, Beam)
H = { }
r epeat

r epeat
BestSub = SubdueCL(Gp, Gn, Limit, Beam)
if BestSub = { }

then Beam = Beam *  1.1
until ( BestSub ≠ { } )
Gp = Gp – {  p ∈ Gp | BestSub covers p }
H = H + BestSub

until Gp = { }
r eturn H

end



Figure 2.  SubdueCL algorithm. 
 

The Limit parameter is used to expand as many substructures as the Limit, but if the BestList 
is empty after expanding Limit substructures from the ParentList, the limit is increased by 20% 
until one is found. We chose to increase this limit by 20%, because it was usually enough to find a 
positive substructure in the next trial when working with our experiments. Finally, the SubdueCL 
function returns the best of BestList. All the lists are ordered according to the substructures' 
values.  The order-independence of SubdueCL’s input graphs and its tolerance to noise and 
variability in the graph representation result in high stability in the results. 

The SubdueCL system has been applied to a number of other domains, including finding 
structural signatures of DNA transcription sites and functionally similar proteins [3], determining 
types of earthquakes and causes of aircraft incidents based on spatial-temporal relationships [1], 
and identifying patterns in the hyperlink structure of websites [4].  Source code for SubdueCL, as 
well as publications and sample databases, can be found at http://cygnus.uta.edu/subdue/. 
 

4 Predictive Toxicology Domain 
 
In this section we describe two experiments performed in the predictive toxicology domain.  The 
first experiment uses data from the first two challenges (PTC-1 and PTC-2).  The second 
experiment describes recent results from the current PTC-3 challenge. 

SubdueCL (Gp, Gn, Limit, Beam)
ParentList = (All substructures of one vertex in Gp) mod Beam
repeat

BestList = { }
Exhausted = TRUE
i = Limit
while ( (i > 0 ) and (ParentList ≠ { } ) )

ChildList = { }
foreach substucture in ParentList

C = Expand(Substructure)
if CoversOnePos(C,Gp)

then BestList = BestList ∪ { C}
ChildList = ( ChildList ∪ C ) mod Beam
i = i – 1

endfor
ParentList = ChildList mod Beam

endwhile
if BestList = { }  and ParentList ≠ { }

then Exhausted = FALSE
Limit = Limit *  1.2

until ( Exhausted = TRUE  )
return first(BestList)

end



4.1 PTC-1 and PTC-2 Exper imentation 
 
The PTC carcinogenesis databases contain information about chemical compounds and the results 
of laboratory tests made to rodents in order to determine if the chemical induces cancer to them or 
not. The information used for this experiment was taken from the web site: 
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/PTE/. Figure 3 shows a portion of the 
graph representation for one compound. 
 

The data in this database comes from the predictive toxicology evaluation project conducted 
by the National Institute of Environmental Health Sciences (NIEHS). This database was built for a 
challenge to predict the result of the tests using machine learning techniques. The dataset contains 
162 positive examples and 136 negative examples used for training and two sets of testing 
examples, the first called PTE-1 with 20 positive examples and 19 negative examples, and the 
second called PTE-2 that consists of 30 examples, but at the time of the experiments only 7 were 
known to be positive, 6 negative and the others were being evaluated. 
 

 
Figure 4.  Two of the substructures found by SubdueCL in the cancer domain. 

 
Figure 4 shows two of the substructures that SubdueCL found to describe a compound that 

produces cancer. The first substructure says that a compound that reported positive in the genetic 

compound

amine

p
chromaberr

has_group

compound p
drosophila_slrl

compound

amine

p
chromaberr

has_group

compoundcompound

amine

p
chromaberr

has_group

compound p
drosophila_slrl

compoundcompound p
drosophila_slrl

compound

atom

atom

c

22

-13

c

22

-13

element

element

type

type

charge

charge

7

contains

contains

six_ring

in_groupin_group

halide10

ashby_alertashby_alert

p

6

positive
ames

di227

cytogen_ca

compound

atom

atom

c

22

-13

c

22

-13

element

element

type

type

charge

charge

7

contains

contains

six_ring

in_groupin_group

halide10

ashby_alertashby_alert

p

6

positive
ames

di227

cytogen_ca

Figure 3. Portion of the graph representation of carcinogensis compound. 



toxicology test “drosophila_slrl”  produces cancer. The second substructure says that a compound 
that reported positive in genetic toxicology test “chromaberr”  and that also has an amine group 
produces cancer.  

We performed a 10-fold cross-validation on the training data with SubdueCL, which achieved 
an accuracy of 55.52%. We also performed an experiment training SubdueCL with the 298 
training examples and testing on the PTE-1 examples. For this test SubdueCL had a 61.54% 
accuracy with 14 positive errors (not covering active components) and 1 negative error (covering 
an inactive component) from the total of 39 components. 

Although this is not an encouraging result, we have to consider that this is a very difficult task 
where the best reported accuracy is 77% using a chemist type system that involved participation of 
human experts and access to biological data that was not available to Progol or SubdueCL, 
because we are using the same data that Progol used [8]. In this test Progol achieved an accuracy 
of 72% as reported in [8]. We tried to reproduce the experiments for Progol, but we could not get 
the 72% accuracy. Our best result for Progol is 64%, but we are trying to find the right Progol 
parameters in order to achieve the 72% cited in the literature. It is important to say that the 
background knowledge used by Progol includes a set of rules related to mutagenesis previously 
found by Progol. A compound that is found to be mutagenic is more likely to cause cancer. We 
did not use these rules with SubdueCL. We will use these rules for our experiments in future work, 
but before doing this we need to study more about the mutagenesis domain and obtain expert 
evaluation of our results. 
 

4.2 PTC-3 Exper imentation 
 
We also applied SubdueCL  to the data set provided at “The Predictive Toxicology Challenge 
2000 – 2001”  web page in prolog format (file KULeuven.tgz). We created a program to read all 
the information related to the compounds from an input file and generate an output graph file. The 
output graph file consists of positive and negative examples classified according to the class for 
which they were done (male rats MR, female rats FR, male mice MM, or female mice FM). 

The information that we considered for each compound was the name (i.e., tr000), class_MR 
(classification of this compound for Male Rats), class_FR, class_MM, class_FM, nAmine (number 
of Amine groups of this compound), nP_amine, nS_amine, nT_amine, nAmine_salt, nImine, 
nNitrile, nIso_cyanate, nNitro, nCarbonyl2, nester, nCarbonic_acid, nAnhydrid, nAmide, 
nP_amide, nS_amide, nT_amide, nAldehyde, nAcetale, nKetone, nAlchohol, nFenol, nether, 
nThio_ether, nSulfonic_acid, nSulfonic_amide, nPhosphate_ester, nPhosphor_amidate, nMehyl, 
nAlkane, nAlkene, nRingstruct, nAromatic, nAro2n2, and nAro2n.  For each atom we included the 
element, and for each bond, we included an edge linking two atom vertices labeled with the bond 
type.  For groups we linked the name of the group to the compound with edges linking the group 
name to the atoms that belong to the group.  The relation defining the number of each type of 
group was not used directly, but individual counts were done for each group and added as binary 
relations to the compound. We did not include the short-term assays or predictive tests as used in 
the previous experiments. 

One of SubdueCL’s current limitations is difficulty in matching real-valued attributes.  Two 
different, real values, not matter how close, constitute a mismatched label to SubdueCL.  Facilities 
are available in SubdueCL to annotate real values with threshold information to allow a more 
flexible match, but these thresholds must be determined based on expert knowledge of the domain.  
Therefore, at this point, some of the real-valued attributes were not included in the graph 
representation.  These include the atom coordinates, atom charge, number of atoms in the 
molecule, weight of the molecule, and distance charges. 



We created four training files and four testing files (i.e., a training file for male rats with its 
corresponding testing file). We chose to present our findings for male rats only due to their 
achieving maximum accuracy among the other submissions to the challenge. Figures 5-8 show 
some of the substructures found by SubdueCL for the classification of compounds according to 
their activity in male rats.  Expert evaluation of these results is currently in progress. 

 
Figure 5. A compound that contains two halide groups of type “br”  and that also have an “alkane”  
group may cause cancer. 

 
Figure 6. A compound that contains 2 “p_amine”  groups and an “aro2n2”  groups may cause 
cancer. 

 
Figure 7. A compound that contains a group “Carbonyl12”  and a group “Aro2n2”  may cause 
cancer. 

 
Figure 8. A compound that contains four “Alkane”  groups and three “Ring Structures”  may cause 
cancer. 
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5 Conclusion 
In this research we introduced our graph-based concept learning approach and its implementation 
in the SubdueCL system. In the case of the cancer domain SubdueCL obtained a lower accuracy 
result than Progol, but this was due to the mutagenic information used by Progol that was not 
available to SubdueCL.  We also show results of SubdueCL on data from the current predictive 
toxicology challenge.  SubdueCL’s results in the male rats category achieved maximum 
performance among the challenge submissions. 

There are some enhancements that we need to make to SubdueCL. One enhancement consists 
in giving SubdueCL the ability to express ranges of values. This would be very useful for domains 
that involve continuous variables. In this type of domain SubdueCL could find substructures 
containing vertices whose value expresses a range of values that the continuous variable can take. 
This would make SubdueCL more competitive with ILP systems. Another enhancement that 
would make SubdueCL more competitive with ILP systems would be to allow SubdueCL to 
express that the label of one vertex is the same as another vertex, and also that the numeric label of 
one vertex is greater or less than the numeric label of another vertex. 

We also want to work further in the cancer domain. We want to add the mutagenetic rules 
(mentioned in the experiments section) that Progol used to the SubdueCL representation and see if 
SubdueCL is able to achieve the same accuracy as Progol did in that domain. We also plan to 
apply SubdueCL to other biological databases. For example, the 2001 Knowledge Discovery in 
Databases (KDD) Cup focuses on data from genomics and drug design. This and other such 
domains, where relational information is available, will provide further insight into SubdueCL’s 
ability to efficiently and effectively learn in these domains. 
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