
 1

�
���������	
���
��������

Lawrence B. Holder
University of Texas at Arlington, USA

Diane J. Cook
University of Texas at Arlington, USA

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Graph-based data mining represents a collection of
techniques for mining the relational aspects of data
represented as a graph. Two major approaches to graph-
based data mining are frequent subgraph mining and
graph-based relational learning. This article will fo-
cus on one particular approach embodied in the Subdue
system, along with recent advances in graph-based su-
pervised learning, graph-based hierarchical conceptual
clustering, and graph-grammar induction.

Most approaches to data mining look for associa-
tions among an entity’s attributes, but relationships
between entities represent a rich source of information,
and ultimately knowledge. The field of multi-relational
data mining, of which graph-based data mining is a part,
is a new area investigating approaches to mining this
relational information by finding associations involving
multiple tables in a relational database. Two main ap-
proaches have been developed for mining relational
information: logic-based approaches and graph-based
approaches.

Logic-based approaches fall under the area of induc-
tive logic programming (ILP). ILP embodies a number
of techniques for inducing a logical theory to describe
the data, and many techniques have been adapted to
multi-relational data mining (Dzeroski & Lavrac, 2001;
Dzeroski, 2003). Graph-based approaches differ from
logic-based approaches to relational mining in several
ways, the most obvious of which is the underlying rep-
resentation. Furthermore, logic-based approaches rely
on the prior identification of the predicate or predicates
to be mined, while graph-based approaches are more
data-driven, identifying any portion of the graph that has
high support. However, logic-based approaches allow
the expression of more complicated patterns involving,
for example, recursion, variables, and constraints among
variables. These representational limitations of graphs
can be overcome, but at a computational cost.

BACKGROUND

Graph-based data mining (GDM) is the task of finding
novel, useful, and understandable graph-theoretic pat-
terns in a graph representation of data. Several ap-
proaches to GDM exist based on the task of identifying
frequently occurring subgraphs in graph transactions,
that is, those subgraphs meeting a minimum level of
support. Washio & Motoda (2003) provide an excellent
survey of these approaches. We here describe four
representative GDM methods.

Kuramochi and Karypis (2001) developed the FSG
system for finding all frequent subgraphs in large graph
databases. FSG starts by finding all frequent single and
double edge subgraphs. Then, in each iteration, it gener-
ates candidate subgraphs by expanding the subgraphs
found in the previous iteration by one edge. In each
iteration the algorithm checks how many times the
candidate subgraph occurs within an entire graph. The
candidates, whose frequency is below a user-defined
level, are pruned. The algorithm returns all subgraphs
occurring more frequently than the given level.

Yan and Han (2002) introduced gSpan, which com-
bines depth-first search and lexicographic ordering to
find frequent subgraphs. Their algorithm starts from all
frequent one-edge graphs. The labels on these edges
together with labels on incident vertices define a code
for every such graph. Expansion of these one-edge
graphs maps them to longer codes. Since every graph
can map to many codes, all but the smallest code are
pruned. Code ordering and pruning reduces the cost of
matching frequent subgraphs in gSpan. Yan & Han (2003)
describe a refinement to gSpan, called CloseGraph,
which identifies only subgraphs satisfying the minimum
support, such that no supergraph exists with the same
level of support.

Inokuchi et al. (2003) developed the Apriori-based
Graph Mining (AGM) system, which searches the space
of frequent subgraphs in a bottom-up fashion, beginning

2

Graph-Based Data Mining

with a single vertex, and then continually expanding by a
single vertex and one or more edges. AGM also employs
a canonical coding of graphs in order to support fast
subgraph matching. AGM returns association rules sat-
isfying user-specified levels of support and confidence.

The last approach to GDM, and the one discussed in
the remainder of this chapter, is embodied in the Subdue
system (Cook & Holder, 2000). Unlike the above sys-
tems, Subdue seeks a subgraph pattern that not only
occurs frequently in the input graph, but also signifi-
cantly compresses the input graph when each instance of
the pattern is replaced by a single vertex. Subdue per-
forms a greedy search through the space of subgraphs,
beginning with a single vertex and expanding by one
edge. Subdue returns the pattern that maximally com-
presses the input graph. Holder & Cook (2003) describe
current and future directions in this graph-based rela-
tional learning variant of GDM.

MAIN THRUST

As a representative of GDM methods, this section will
focus on the Subdue graph-based data mining system.
The input data is a directed graph with labels on vertices
and edges. Subdue searches for a substructure that best
compresses the input graph. A substructure consists of
a subgraph definition and all its occurrences throughout
the graph. The initial state of the search is the set of
substructures consisting of all uniquely labeled verti-
ces. The only operator of the search is the Extend
Substructure operator. As its name suggests, it extends
a substructure in all possible ways by a single edge and
a vertex, or by only a single edge if both vertices are
already in the subgraph.

Subdue’s search is guided by the minimum descrip-
tion length (MDL) principle, which seeks to minimize
the description length of the entire data set. The evalu-
ation heuristic based on the MDL principle assumes that
the best substructure is the one that minimizes the
description length of the input graph when compressed
by the substructure. The description length of the sub-
structure S given the input graph G is calculated as
DL(G,S) = DL(S)+DL(G|S), where DL(S) is the descrip-
tion length of the substructure, and DL(G|S) is the
description length of the input graph compressed by the
substructure. Subdue seeks a substructure S that mini-
mizes DL(G,S).

The search progresses by applying the Extend Sub-
structure operator to each substructure in the current
state. The resulting state, however, does not contain all
the substructures generated by the Extend Substructure
operator. The substructures are kept on a queue and are
ordered based on their description length (or some-

times referred to as value) as calculated using the MDL
principle. The queue’s length is bounded by a user-
defined constant.

The search terminates upon reaching a user-speci-
fied limit on the number of substructures extended, or
upon exhaustion of the search space. Once the search
terminates and Subdue returns the list of best substruc-
tures found, the graph can be compressed using the best
substructure. The compression procedure replaces all
instances of the substructure in the input graph by single
vertices, which represent the substructure’s instances.
Incoming and outgoing edges to and from the replaced
instances will point to, or originate from the new vertex
that represents the instance. The Subdue algorithm can
be invoked again on this compressed graph.

Figure 1 illustrates the GDM process on a simple
example. Subdue discovers substructure S

1
, which is

used to compress the data. Subdue can then run for a
second iteration on the compressed graph, discovering
substructure S

2
. Because instances of a substructure can

appear in slightly different forms throughout the data, an
inexact graph match, based on graph edit distance, is
used to identify substructure instances.

Most GDM methods follow a similar process. Varia-
tions involve different heuristics (e.g., frequency vs.
MDL) and different search operators (e.g., merge vs.
extend).

Graph-Based Hierarchical Conceptual
Clustering

Given the ability to find a prevalent subgraph pattern in
a larger graph and then compress the graph with this
pattern, iterating over this process until the graph can no
longer be compressed will produce a hierarchical, con-
ceptual clustering of the input data. On the ith iteration,
the best subgraph S

i
 is used to compress the input graph,

introducing new vertices labeled S
i
 in the graph input to

the next iteration. Therefore, any subsequently-discov-
ered subgraph S

j
 can be defined in terms of one or more

of S
i
s, where i < j. The result is a lattice, where each

cluster can be defined in terms of more than one parent

Figure 1. Graph-based data mining: A simple example

S1

S1

S1

S1

S1

S2

S2 S2

 3

Graph-Based Data Mining

�
subgraph. For example, shows such a clustering done on
a DNA molecule. Note that the ordering of pattern dis-
covery can affect the parents of a pattern. For instance,
the lower-left pattern in could have used the C-C-O
pattern, rather than the C-C pattern, but in fact, the lower-
left pattern is discovered before the C-C-O pattern. For
more information on graph-based clustering, see Jonyer
et al. (2001).

Graph-Based Supervised Learning

Extending a graph-based data mining approach to per-
form supervised learning involves the need to handle
negative examples (focusing on the two-class scenario).
In the case of a graph the negative information can come
in three forms. First, the data may be in the form of
numerous smaller graphs, or graph transactions, each
labeled either positive or negative. Second, data may be
composed of two large graphs: one positive and one
negative. Third, the data may be one large graph in which
the positive and negative labeling occurs throughout. We
will talk about the third scenario in the section on future
directions. The first scenario is closest to the standard
supervised learning problem in that we have a set of
clearly defined examples. Let G+ represent the set of
positive graphs, and G- represent the set of negative
graphs. Then, one approach to supervised learning is to
find a subgraph that appears often in the positive graphs,
but not in the negative graphs. This amounts to replacing
the information-theoretic measure with simply an er-
ror-based measure. This approach will lead the search
toward a small subgraph that discriminates well. How-
ever, such a subgraph does not necessarily compress
well, nor represent a characteristic description of the
target concept.

We can bias the search toward a more characteristic
description by using the information-theoretic mea-
sure to look for a subgraph that compresses the positive
examples, but not the negative examples. If I(G) repre-
sents the description length (in bits) of the graph G, and
I(G|S) represents the description length of graph G
compressed by subgraph S, then we can look for an S
that minimizes I(G+|S) + I(S) + I(G-) – I(G-|S), where the
last two terms represent the portion of the negative
graph incorrectly compressed by the subgraph. This
approach will lead the search toward a larger subgraph
that characterizes the positive examples, but not the
negative examples.

Finally, this process can be iterated in a set-cover-
ing approach to learn a disjunctive hypothesis. If using
the error measure, then any positive example contain-
ing the learned subgraph would be removed from subse-
quent iterations. If using the information-theoretic
measure, then instances of the learned subgraph in both
the positive and negative examples (even multiple in-
stances per example) are compressed to a single ver-
tex. Note that the compression is a lossy one, that is we
do not keep enough information in the compressed
graph to know how the instance was connected to the
rest of the graph. This approach is consistent with our
goal of learning general patterns, rather than mere
compression. For more information on graph-based
supervised learning, see Gonzalez et al. (2002).

Graph Grammar Induction

As mentioned earlier, two of the advantages of logic-
based approach to relational learning are the ability to
learn recursive hypotheses and constraints among vari-
ables. However, there has been much work in the area of
graph grammars, which overcome this limitation. Graph
grammars are similar to string grammars except that
terminals can be arbitrary graphs rather than symbols
from an alphabet. While much of the work on graph
grammars involves the analysis of various classes of
graph grammars, recent research has begun to develop
techniques for learning graph grammars (Doshi et al.,
2002; Jonyer et al., 2002).

Figure 3b shows an example of a recursive graph
grammar production rule learned from the graph in a.
A GDM approach can be extended to consider graph
grammar productions by analyzing the instances of a
subgraph to see how they are related to each other. If
two or more instances are connected to each other by
one or more edges, then a recursive production rule
generating an infinite sequence of such connected sub-
graphs can be constructed. A slight modification to the
information-theoretic measure taking into account the
extra information needed to describe the recursive

Figure 2. Graph-based hierarchical, conceptual
clustering of a DNA molecule

DNA

 O
 |
O == P — OH

C — N C — C

C — C
 \
 O

 O
 |
O == P — OH
 |
 O
 |
 CH2

C
 \
 N — C
 \
 C

 O
 \
 C
 / \
 C — C N — C
 / \
O C

4

Graph-Based Data Mining

component of the production is all that is needed to
allow such a hypothesis to compete along side simple
subgraphs (i.e., terminal productions) for maximizing
compression.

These graph grammar productions can include non-
terminals on the right-hand side. These productions can
be disjunctive, as in c, which represents the final produc-
tion learned from a using this approach. The disjunction
rule is learned by looking for similar, but not identical,
extensions to the instances of a subgraph. A new rule can
be constructed that captures the disjunctive nature of
this extension, and included in the pool of production
rules competing based on their ability to compress the
input graph. With a proper encoding of this disjunction
information, the MDL criterion will tradeoff the com-
plexity of the rule with the amount of compression it
affords in the input graph. An alternative to defining
these disjunction non-terminals is to instead construct
a variable whose range consists of the different disjunc-
tive values of the production. In this way we can intro-
duce constraints among variables contained in a sub-
graph by adding a constraint edge to the subgraph. For
example, if the four instances of the triangle structure in
a each had another edge to a c, d, f and f vertex respec-
tively, then we could propose a new subgraph, where
these two vertices are

represented by variables, and an equality constraint
is introduced between them. If the range of the variable
is numeric, then we can also consider inequality con-
straints between variables and other vertices or vari-
ables in the subgraph pattern.

Jonyer (2003) has developed a graph grammar learn-
ing approach with the above capabilities. The approach
has shown promise both in handling noise and learning

recursive hypotheses in many different domains includ-
ing learning the building blocks of proteins and commu-
nication chains in organized crime.

FUTURE TRENDS

The field of graph-based relational learning is still
young, but the need for practical algorithms is growing
fast. Therefore, we need to address several challenging
scalability issues, including incremental learning in
dynamic graphs. Another issue regarding practical ap-
plications involves the blurring of positive and negative
examples in a supervised learning task, that is, the graph
has many positive and negative parts, not easily sepa-
rated, and with varying degrees of class membership.

Partitioning and Incremental Mining for
Scalability

Scaling GDM approaches to very large graphs, graphs
too big to fit in main memory, is an ever-growing
challenge. Two approaches to address this challenge are
being investigated. One approach involves partitioning
the graph into smaller graphs that can be processed in a
distributed fashion (Cook et al., 2001). A second ap-
proach involves implementing GDM within a relational
database management system, taking advantage of user-
defined functions and the optimized storage capabilities
of the RDBMS.

A newer issue regarding scalability involves dy-
namic graphs. With the advent of real-time streaming
data, many data mining systems must mine incremen-
tally, rather than off-line from scratch. Many of the
domains we wish to mine in graph form are dynamic
domains. We do not have the time to periodically re-
build graphs of all the data to date and run a GDM system
from scratch. We must develop methods to incremen-
tally update the graph and the patterns currently preva-
lent in the graph. One approach is similar to the graph
partitioning approach for distributed processing. New
data can be stored in an increasing number of partitions.
Information within partitions can be exchanged, or a
repartitioning can be performed if the information loss
exceeds some threshold. GDM can be used to search the
new partitions, suggesting new subgraph patterns as they
evaluate highly in new and old partitions.

Supervised Learning with Blurred
Graphs

In a highly relational domain the positive and negative
examples of a concept are not easily separated. Such a

Figure 3. Graph grammar learning example with (a)
the input graph, (b) the first grammar rule learned,
and (c) the second and third grammar rules learned

a

c b

a

d b

a

f b

a

f b

x

q z

y x

q z

y x

q z

y x

q z

y r

k

x

q z

y S1 S1 x

q z

y

S2 a

b S3

S2

S3 c d f

a

b S3

(a)

(b)

(c)

 5

Graph-Based Data Mining

�
graph is called a blurred graph, in that the graph as a
whole contains class information, but perhaps not indi-
vidual components of the graph. This scenario presents
a challenge to any data mining system, but especially to
a GDM system, where clearly classified data may be
tightly related to less classified data. Two approaches to
this task are being investigated. The first involves modi-
fying the MDL encoding to take into account the amount
of information necessary to describe the class member-
ship of compressed portions of the graph. The second
approach involves treating the class membership of a
vertex or edge as a cost and weighting the information-
theoretic value of the subgraph patterns by the costs of
the instances of the pattern. The ability to learn from
blurred graphs will allow the user more flexibility in
indicating class membership where known, and to vary-
ing degrees, without having to clearly separate the graph
into disjoint examples.

CONCLUSION

Graph-based data mining (GDM) is a fast-growing field
due to the increasing interest in mining the relational
aspects of data. We have described several approaches
to GDM including logic-based approaches in ILP sys-
tems, graph-based frequent subgraph mining approaches
in AGM, FSG and gSpan, and a graph-based relational
learning approach in Subdue. We described the Subdue
approach in detail along with recent advances in super-
vised learning, clustering, and graph-grammar induc-
tion.

However, much work remains to be done. Because
many of the graph-theoretic operations inherent in GDM
are NP-complete or definitely not in P, scalability is a
constant challenge. With the increased need for mining
streaming data, the development of new methods for
incremental learning from dynamic graphs is important.
Also, the blurring of example boundaries in a supervised
learning scenario gives rise to graphs, where the class
membership of even nearby vertices and edges can vary
considerably. We need to develop better methods for
learning in these blurred graphs.

Finally, we discussed several domains throughout
this paper that benefit from a graphical representation
and the use of GDM to extract novel and useful patterns.
As more and more domains realize the increased predic-
tive power of patterns in relationships between entities,
rather than just attributes of entities, graph-based data
mining will become foundational to our ability to better
understand the ever-increasing amount of data in our
world.

REFERENCES

Cook, D., & Holder, L. (2000). Graph-based data min-
ing. IEEE Intelligent Systems, 15(2), 32-41.

Cook, D., Holder, L., Galal, G., & Maglothin, R. (2001).
Approaches to parallel graph-based knowledge discov-
ery. Journal of Parallel and Distributed Computing,
61(3), 427-446.

Doshi, S., Huang, F., & Oates, T. (2002). Inferring the
structure of graph grammars from data. In Proceedings
of the International Conference on Knowledge-based
Computer Systems.

Dzeroski, S., & Lavrac, N. (2001). Relational data
mining. Berlin: Springer Verlag.

Dzeroski, S. (2003). Multi-relational data mining: An
introduction. SIGKDD Explorations, 5(1), 1-16.

Gonzalez, J., Holder, L., & Cook, D. (2002). Graph-
based relational concept learning. In Proceedings of the
Nineteenth International Conference on Machine
Learning.

Holder, L., & Cook, D. (2003). Graph-based relational
learning: Current and future directions. SIGKDD Ex-
plorations, 5(1), 90-93.

Inokuchi, A., Washio, T., & Motoda, H. (2003). Com-
plete mining of frequent patterns from graphs: Mining
graph data. Machine Learning, 50, 321-254.

Jonyer, I., Cook, D., & Holder, L. (2001). Graph-based
hierarchical conceptual clustering. Journal of Machine
Learning Research, 2, 19-43.

Jonyer, I., Holder, L., & Cook, D. (2002). Concept
formation using graph grammars. In Proceedings of the
KDD Workshop on Multi-Relational Data Mining.

Jonyer, I. (2003). Context-free graph grammar induc-
tion using the minimum description length principle.
Ph.D. thesis. Department of Computer Science and
Engineering, University of Texas at Arlington.

Kuramochi, M., & Karypis, G. (2001). Frequent sub-
graph discovery. In Proceedings of the First IEEE
Conference on Data Mining.

Washio, T., & Motoda, H. (2003). State of the art of
graph-based data mining. SIGKDD Explorations, 5(1),
59-68.

Yan, X., & Han, J. (2002). Graph-based substructure
pattern mining. In Proceedings of the International
Conference on Data Mining.

6

Graph-Based Data Mining

Yan, X., & Han, J. (2003). CloseGraph: Mining closed
frequent graph patterns. In Proceedings of the Ninth
International Conference on Knowledge Discovery
and Data Mining.

KEY TERMS

Blurred Graph: Graph in which each vertex and
edge can belong to multiple categories to varying de-
grees. Such a graph complicates the ability to clearly
define transactions on which to perform data mining.

Conceptual Graph: Graph representation described
by a precise semantics based on first-order logic.

Dynamic Graph: Graph representing a constantly
changing stream of data.

Frequent Subgraph Mining: Finding all subgraphs
within a set of graph transactions whose frequency
satisfies a user-specified level of minimum support.

Graph-Based Data Mining: Finding novel, useful,
and understandable graph-theoretic patterns in a graph
representation of data.

Graph Grammar: Grammar describing the con-
struction of a set of graphs, where terminals and non-
terminals represent vertices, edges or entire subgraphs.

Inductive Logic Programming: Techniques for
learning a first-order logic theory to describe a set of
relational data.

Minimum Description Length (MDL) Principle:
Principle stating that the best theory describing a set of
data is the one minimizing the description length of the
theory plus the description length of the data described
(or compressed) by the theory.

Multi-Relational Data Mining: Mining patterns
that involve multiple tables in a relational database.

