
MDL-Based Context-Free Graph Grammar  Induction 

Istvan Jonyer, Lawrence B. Holder and Diane J. Cook 

Department of Computer Science and Engineering 
University of Texas at Arlington 

Box 19015 (416 Yates St.), Arlington, TX 76019-0015 
E-mail: { jonyer | holder | cook} @cse.uta.edu 

 
 

Abstract 
 

We present an algorithm for the inference of context-free 
graph grammars from examples. The algorithm builds on an 
earlier system for frequent substructure discovery, and is 
biased toward grammars that minimize description length. 
Grammar features include recursion, variables and relation-
ships. We present an illustrative example, demonstrate the 
algorithm’s ability to learn in the presence of noise, and 
show real-world examples.  

Introduction 
Acquisition of grammatical knowledge is an important 
machine learning task with applications in pattern 
recognition, data mining and computational linguistics. In 
this research we are concerned with the induction of graph 
grammars due to the increased expressiveness of graphs 
over the textual representations typically used for grammar 
induction. We describe an algorithm for the inference of 
context-free graph grammars—a set of grammar 
production rules that describe a graph-based database. 

Although textual grammars are useful, they are limited 
to describing databases that can be represented as a 
sequence. An example of such a database is a DNA 
sequence. Most databases, however, have a non-sequential 
structure, and many have significant structural 
components. Relational databases are generally good 
examples, but even more complex information can be 
represented using graphs. Examples include circuit 
diagrams and the world-wide web. Graph grammars can 
sti ll represent the simpler feature vector type databases as 
well as sequential databases. 

Grammar induction has a long history. Recent work 
includes learning string grammars with a bias toward those 
that minimize description length (Langley and Stromsten 
2000), inferring compositional hierarchies from strings in 
the Sequitur system (Nevill-Manning and Witten 1997), 
and learning search control from successful parses (Zelle 
et al. 1994). Only a few algorithms exist for the inference 
of graph grammars, however. An enumerative method for 
inferring a limited class of context-sensitive graph 
grammars is due to Bartsch-Spörl (1983). Other algorithms 
utilize a merging technique for hyperedge replacement 
grammars (Jeltsch and Kreowski 1991) and regular tree 
grammars (Carrasco et al. 1998). Our approach is based on 
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a method for discovering frequent substructures in graphs 
driven by the MDL heuristic (Cook and Holder 2000). 

The next section defines the class of context-free graph 
grammars we are attempting to learn. Next, we describe 
the graph grammar learning algorithm and give an 
example. We then present experiments demonstrating the 
effectiveness of the algorithm on artificial and real-world 
data. The last section presents conclusions and future 
work. 

Context-Free Graph Grammars 

We are concerned with graph grammars of the set-
theoretic approach, or expression approach (Nagl 1987). 
Here a graph is a pair of sets G = �V, E� where V is the set 
of vertices or nodes, and E ⊆ V  × V is the set of edges. 
Production rules are of the form S → P, where S and P are 
graphs. When such a rule is applied to a graph, an 
isomorphic copy of S is removed from the graph along 
with all its incident edges, and is replaced with a copy of 
P, together with edges connecting it to the graph. The new 
edges are given new labels to reflect their connection to 
the instance of S replaced in the graph. We are interested 
in learning parse grammars, which applies the production 
rules in reverse, i.e., replacing an instance of P with S. 

A special case of the set-theoretic approach is the node-
label controlled grammar, in which S consists of a single, 
labeled node (Engelfriet and Rozenberg 1991). This is the 
type of grammar we are focusing on. In our case, S is 
always a non-terminal, but P can be any graph, and can 
contain both terminals and non-terminals. Since we are 
going to learn grammars to be used for parsing, the 
embedding function is trivial: external edges that are 
incident on a vertex in the subgraph being replaced (P) 
always get reconnected to the single vertex S. 

Recursive productions are of the form S → P S. The 
non-terminal S is on both sides of the production, and P is 
linked to S via a single edge. The complexity of the 
algorithm is exponential in the number of edges considered 
between recursive instances, so we limit the algorithm to 
one for now. Alternative productions are of the form S → 
P1 | P2 | … | Pn, where S is a non-terminal and the Pi are 
graphs.  The non-terminal S can be thought of as a variable 
having possible values P1, P2, …, Pn. We will refer to such 
an S as a variable non-terminal, or simply variable. If Pi 
are single vertices, then S is synonymous with a regular 
non-graph discrete variable. It is also possible to generalize 
such a production to numeric variables by representing 
possible values via a numeric range: S → [Pmin … Pmax].  

 
 
 



Relationship edges are logical components of the pro-
duction, in contrast to the structural components: nodes 
and edges. Therefore, they cannot be a part of the input, 
but can be part of grammar productions. Relationship 
edges describe relationships between nodes, such as ‘equal 
to’ , and in case of numeric-valued nodes ‘ less than or 
equal to’ . See figures 3 and 5 for examples of graph 
grammar production rules. 

Graph Grammar  Induction 

Our approach to graph grammar induction, called Sub-
dueGL, is based on the Subdue approach (Cook and 
Holder 2000) for discovering common substructures in 
graphs. SubdueGL takes data sets in a graph format. The 
graph representation includes the standard features of 
graphs: labeled vertices and labeled edges. Edges can be 
directed or undirected. When converting data to a graph 
representation, typically objects and values are mapped to 
vertices, and relationships and attributes are mapped to 
edges. 

Algor ithm 
The SubdueGL algorithm follows a bottom-up approach to 
graph grammar learning by performing an iterative search 
on the input graph such that each iteration results in a 
grammar production. When a production is found, the right 
side of the production is abstracted away from the input 
graph by replacing each occurrence of it by the non-
terminal on the left side. SubdueGL iterates until the entire 
input graph is abstracted into a single non-terminal, or a 
user-defined stopping condition is reached.  

In each iteration SubdueGL performs a beam search for 
the best substructure to be used in the next production rule. 
The search starts by finding each uniquely labeled vertex 
and all their instances in the input graph. The subgraph 
definition and all instances are referred to as a substruc-
ture. The ExtendSubstructure search operator is applied to 
each of these single-vertex substructures to produce sub-
structures with two vertices and one edge. This operator 
extends the instances of a substructure by one edge in all 
possible directions to form new instances. Subsets of 
similar instances are collected to form new substructures.  
SubdueGL also considers adding recursion, variables and 
relations to substructures. These additions are described in 
separate sections below. 

The resulting substructures are evaluated according to 
the minimum description length (MDL) principle, which 
states that the best theory is the one that minimizes the 
description length of the entire data set. The MDL princi-
ple was introduced by Rissanen (1989), and applied to 
graph-based knowledge discovery by Cook and Holder 
(1994). The value of a substructure S is calculated by 
Value(S) = DL(S) + DL(G|S), where DL(S) is the descrip-
tion length of the substructure, G is the input graph, and 
DL(G|S) is the description length of the input graph 
compressed by the substructure. SubdueGL seeks to 
minimize the value. Only substructures deemed the best by 
the MDL principle are kept for further extension. 

Recursion 
Recursive productions are created by the RecursifySub-
structure search operator. It is applied to each substructure 
after the ExtendSubstructure operator. RecursifySubstruc-
ture checks each instance of the substructure to see if it is 
connected to any of its other instances by an edge. If so, a 
recursive production is possible. The operator adds the 
connecting edge to the substructure and collects all possib-
le chains of instances. If a recursive production is found to 
be the best at the end of an iteration, each such chain of 
subgraphs is abstracted away and replaced by a single ver-
tex. See figure 3 for an example of a recursive production. 

Since SubdueGL discovers commonly occurring 
substructures first and then attempts to make a recursive 
production, SubdueGL can only make recursive produc-
tions out of lists of substructures that are connected by a 
single edge, which has to have the same label between 
each member substructure of the list. The algorithm is 
exponential in the number of edges considered in the 
recursion, so we limit SubdueGL to single-edge recursive 
productions. Therefore, the system cannot yet induce 
productions such as S → aSb. 

Var iables 
The first step towards discovering variables is discovering 
commonly-occurring structures, since variability in the 
data can be detected by surrounding data. If commonly-
occurring structures are connected to vertices with varying 
labels, these vertices can be turned into variables. See 
figure 5 for an example of a variable production (S3). 

SubdueGL discovers variables inside the ExtendSub-
structure search operator. As mentioned before, SubdueGL 
extends each instance of a substructure in all possible ways 
and groups the new instances that are alike. After this step, 
it also groups new instances in a different way. Those that 
were extended from the same vertex by the same edge in 
all instances, regardless of what vertex they point to, are 
grouped together. Let (v1, e, v2) represent edge e from 
vertex v1 to vertex v2. Vertex v1 is part of the original sub-
structure which was extended by e and v2.  For variable 
creation, instances are grouped using (v1, e, V), where V is 
a variable (non-terminal) vertex whose values include the 
labels of all matching v2’ s. The substructure so created is 
then evaluated using MDL and competes with others for 
top placement.  

The variable V can have many values. It is possible to 
create other substructures from a subset of these values 
that may evaluate better according to the MDL principle. 
Generating all subsets, however, is exponential in the 
number of unique variable values. We employ a heuristic 
based on the number of instances in which each unique 
variable value occurs. The MDL principle prefers values 
that are supported by many instances. Therefore, new sub-
structures are created by successively removing the value 
with the lowest support. All these substructures compete 
for top placement. If all the values of V are numeric, then 
the variable’s range is represented using a minimum and 
maximum value. The above heuristic results in a 
progressive narrowing of this range. 



Relationships 
SubdueGL also introduces relationship edges into the 
grammar. Relationship edges increase the expressive 
power of a grammar by identifying vertices with labels that 
are equivalent. In the case of numerical labels the less-
than-or-equal-to relationship is also possible via a directed 
relationship edge. 

Relationships are discovered after identifying variables. 
At least one vertex participating in a relationship has to be 
a variable non-terminal, since relationships between non-
variables are trivial. A relationship edge is identified by 
comparing a newly discovered variable’s values in each 
instance to every other vertex. If the same relationship 
holds between the variable and another vertex in every 
instance of the substructure, a relationship edge is created. 
Figure 1 shows an example of a production that contains 
two relationships. The relationship edges are marked with 
dotted arrows and labeled ‘<=’  and ‘=’ .  
 
 
 
 
 
 

Example 
In this section we give an example of SubdueGL’s opera-
tion. Consider the input graph shown in figure 2. It is the 
graph representation of an artificially generated domain. It 
features lists of static structures (square shape), a list of a 
changing structure (triangle shape), and some additional 

random vertices and edges. For a cleaner appearance we 
omitted edge labels in the figures. The edge labels within 
the triangle-looking subgraph are ‘ t’ , in the square-looking 
subgraph ‘ s’ , and the rest of the edges are labeled ‘next’ . 

SubdueGL starts out by collecting all the unique vertices 
in the graph and expanding them in all possible directions. 
Let us follow the extension of vertex ‘ x’—keeping in mind 
that the others are expanded in parallel. When vertex ‘x’  is 
expanded in all possible directions, it results in 2-vertex 
substructures, with edges (x, s, y), (x, s, z), (y, next, x), and 
(x, next, r). The first two substructures rank higher, since 
those have four instances and compress the graph better 
than the latter two with only 2 and 1 instances respectively. 

Applying the ExtendSubstructure operator three more 
times results in a substructure having vertices { x, y, z, q}  
and four edges connecting these four vertices. This 

substructure has four instances. Being the biggest and most 
common substructure, it ranks on the top. Executing the 
RecursifySubstructure operator results in the recursive 
grammar rule shown in figure 3. The production covers 
two lists of two instances of the substructure. 

The recursive production was constructed by checking 
all outgoing edges of each instance to see if they are 
connected to any other instance. We can see in figure 2 
that the instance in the lower left is connected to the 
instance on its right, via vertex ‘ y’  being connected to 
vertex ‘ x’ . Same is the situation on the lower right side. 
Abstracting out these four instances using the above 
production results in the graph depicted in figure 4. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
The next iteration of SubdueGL uses this graph as its 

input graph to infer the next grammar rule. Looking at the 
graph, one can easily see that the most common substruc-
ture now is the triangle-looking subgraph. In fact, 
SubdueGL finds a portion of that simply by looking for 
substructures that are exactly the same. This part is the 
substructure having vertices { a, b}  and edge (a, t, b). It has 
four instances. Extending this structure further by an edge 
and a vertex adds different vertices to each instance: ‘ c’ , 
‘d’ , ‘ e’ , and ‘ f’ . The resulting single-instance substructures 
evaluate poorly by the MDL heuristic. 

SubdueGL at this point generates another substructure 
with four instances, replacing vertices ‘ c’ , ‘ d’ , ‘e’ , and ‘ f’  
with a non-terminal vertex (S3) in the substructure, thereby 
creating a variable. This substructure now has four 
instances, and stands the best chance of getting selected for 
the next production. 

After the ExtendSubstructure operation, however, 
SubdueGL hands the substructure to RecursifySubstructure 
to see if any of the instances are connected. Since all four 
of them are connected by an edge, a recursive substructure 
is created which covers even more of the input graph, 
having included three additional edges. Also, it is replaced 
by a single non-terminal in the input graph, versus four 
non-terminals when abstracting out the instances non-
recursively, one-by-one.  

The new productions generated in this iteration are 
shown in figure 5. Abstracting away these substructures 
produces the graph shown in figure 6. 

In the next iteration, SubdueGL cannot find any 
recurring substructures that can be abstracted out to reduce 
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Figure 4.  Input graph, parsed by the first production. 

a 

c b 

a 

d b 

a 

e b 

a 

f b 

r 

k 

S1 S1 

Figure 3.  First production generated by SubdueGL. 

x 

q z 

y S1 S1 x 

q z 

y 

Figure 1.  Graph grammar production with relationships. 

air speed 
 

visibility 
 

lighting on 
 

landing gear out 
 Air Crash 

yes 

yes 

1.5 

220 

= <= S ���������



the graph’s description length. The graph in figure 6, 
therefore becomes the right side of the last production. 
When this rule is executed, the graph is fully parsed. 
 
 
 
 
 
 
 
 

Exper imental Results 
We devised an experiment to show that SubdueGL does 
not simply discover arbitrary grammars, but finds the most 
relevant grammars. This proof-of-concept experiment 
involved using a known graph grammar to generate a 
graph and having SubdueGL infer the original graph 
grammar from the graph at varying levels of noise. The 
grammar we used had nine productions describing graph 
structures of varying shapes and sizes. Two of these were 
recursive, and four non-recursive. Three were variables 
(discrete and continuous) with varying number values. We 
also had non-terminals on the right side of productions. In 
other words, we made it quite complex. Due to space 
restrictions we do not show the grammar here. 

The experimental process included the following steps: 
(1) Generate graph from known grammar, (2) Corrupt the 
graph by noise, (3) Use SubdueGL to infer a grammar 
from the corrupted graph, (4) Compute the error by 
comparing SubdueGL’s output with the original grammar. 
Since the right side of each production is a graph, the error 
is defined as the number of graph transformations (i.e., 
insert/delete vertex/edge or change label) needed to 
transform the known grammar into the inferred grammar. 

We corrupted the generated input graph from 0% up to 
100% of noise in 5% increments. The noise introduced 
was defined as the combination of two parameters: the 
percentage of instances embedded into the graph to be 
corrupted, and the percentage of a single instance to be 
corrupted. For example, if we intend to introduce 10% 
overall noise, we corrupt 31.6% of 31.6% of the instances 
(31.6% squared being 10%).  

Figure 7 shows the results, where the curve represents 
the average of ten trials. At 0% noise SubdueGL always 
found the original grammar exactly. We found that in the 
presence of noise the algorithm has a tendency to add extra 
values to variables. An argument to SubdueGL that 
specifies a minimum support for variable values reduces 
its sensitivity to noise. The minimum support specifies the 
percentage of instances in which a unique variable value 
has to appear to be included in a variable production. The 
results shown in figure 7 were obtained using 10% 
minimum support, although the results obtained without 
specifying a minimum support were only slightly worse. 
As the figure shows, the error stays below 10 transforma-
tions, with up to 35% noise.  
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As a real-world example, we applied SubdueGL to pro-
tein sequence data. Specifically, we analyzed the primary 
and secondary structure of the proteins myoglobin and 
hemoglobin, respectively. These proteins are used widely 
to i llustrate nearly every important feature of protein struc-
ture, function, and evolution (Dickerson & Geis, 1983). 
 
S  →→→→   S2 –> S3 –> S4 –> S5 –> S6 –> S7 –> S8 –> S9 –> S10 –> S11  
 –> S12 –> S13 –> S14 –> S15 –> ALA –> S 
S2 →→→→ VAL | LEU | SER | GLU | GLY | TRP | GLN | HIS |  
 ALA | LYS | ASP | ILE | PHE | THR | ASN 

S3 →→→→ VAL | LEU | SER | GLU | GLN | HIS | ALA | ASP |  
 ILE | ARG | THR | MET | ASN  
... 

S20 →→→→  S21 –> S22 –> S23 –> S24 –> S25 –> S26 –> S27 –> LEU –> S20 
S21 →→→→ VAL | GLY | GLN | ALA | LYS | ASP | PHE | MET | S 
S22 →→→→ VAL | LEU | GLU | GLY | GLN | HIS | ALA | LYS |  

 ILE | PHE | THR | MET | S 
... 

S30 →→→→  S31 –> S32 –> S33 –> S34 –> S35 –> S36 –> S37 –> S38 –> GLY  
 –> S30 
S31 →→→→ LYS | S | S10 

S32 →→→→ SER | GLU | HIS | LYS | ASP | S 
S33 →→→→ VAL | GLU | HIS | ILE | PRO | THR 

S34 →→→→ VAL | GLU | TRP | ALA | ASP | PRO 

S35 →→→→ GLY | ALA | THR 

S36 →→→→ GLY | HIS | LYS | ASP | PHE | PRO 

S37 →→→→ VAL | GLY | LYS | PHE | PRO | TYR  

S38 →→→→ VAL | GLN | HIS | ALA | LYS | THR 

S40 →→→→   S30 –> S30 –> S20 –> S –> HIS –> LYS –> LYS –> LYS 

Figure 8.  Partial grammar induced by SubdueGL on protein 
primary-sequence data. 

The primary structure of myoglobin is represented as a 
sequence of amino acids, which have a three letter acro-
nym. These compose the vertices of the input graph, which 
are connected by edges labeled ‘ next’ . The grammar 
induced by SubdueGL is shown in figure 8, where graph 
vertices are only shown by their labels. The arrow →→→→ is the 
production operator, while –> signifies the edge ‘next’  in 
the graph. For lack of space, we omitted a few variables 
(S4 through S15, and S23 through S27). The expressive 
power of the grammar is apparent at the first glance. Pro-
ductions S, S20, and S30 are recursive, while S40 contains 
all these recursive rules followed by a static sequence of 
amino acids. Rules S, S20, and S30 each contain a single 
amino acid at the end of the chain which signifies a 
recurrence of these amino acids with various combinations 
of other amino acids in between. Productions S21, S22, S31, 
and S32 are also interesting, as they describe regularities 
among single amino acids, and a recursive sequence of 

Figure 6.  Input parsed by the 
second and third productions. 
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the presence of noise. 



amino acids. In the case of S31, it can be replaced by LYS, 
S (a recurrent sequence) or S10 (another variable).  

For the next example we use the secondary structure of 
hemoglobin, which is represented in graph form as a 
sequence of helices and sheets along the primary sequence. 
Each helix is a vertex which are connected via edges 
labeled ‘next’ . Each helix is encoded in the form ‘h_t_l’ , 
where h stands for helix, t is the helix type, and l is the 
length. Part of the grammar identified by SubdueGL is 
shown in figure 9. This grammar only involves helices of 
type 1 (right-handed α-helix). This grammar can generate 
the most frequently occurring helix sequences that are 
unique to hemoglobin. In fact, when compared to the 
grammars generated for myoglobin and other proteins, the 
differences can be readily identified.  

 
S  →→→→ S2 –> S3 –> h_1_6 –> S4 –> h_1_19 –> h_1_8 –> h_1_18 –> S5 
S2  →→→→ h_1_14 | h_1_15 

S3  →→→→ h_1_14 | h_1_15 

S4  →→→→ h_1_6 | h_1_1 

S5  →→→→ h_1_20 | h_1_23 

Figure 9.  Partial grammar induced by SubdueGL on protein 
secondary structure data. 

Brazma et al. (1998) presented a survey of approaches to 
automatic pattern discovery in biosequences. Context-free 
grammars are superior to approaches surveyed there in 
their ability to represent recursion and relationships among 
variables. 

Conclusions and Future Work 

In this paper we introduced an algorithm, SubdueGL, 
which is able to infer graph grammars from examples. The 
algorithm is based on the Subdue system which has had 
success in structural data mining in several domains. 
SubdueGL focuses on context-free graph grammars. Its 
current capabilities include finding static structures, 
finding variables, relationships, recursive structures, and 
numeric label handling. 

We have implemented a concept learning version of 
SubdueGL as well. It accepts positive and negative input 
graphs and attempts to construct a grammar that describes 
the positive graph well, while not describing the negative 
graph. The value of substructure S is computed as 
Value(S) = DL(S) + DL(G+|S) + DL(G–) – DL(G–|S), 
where DL(S) is the description length of the substructure, 
G+ is the positive input graph, G– is the negative input 
graph. We are currently conducting experiments using 
concept learning. 

Despite the advantages of SubdueGL’s expressive 
power, there is room for improvement. As mentioned 
before, recursive productions can only be formed out of 
recurring sequences using a single edge. At this point, 
variable productions can only have single vertices on the 
right side of the production. Even though the vertex can be 
a non-terminal, there might be advantages to allowing 
arbitrary graphs as well. 

Our experiments show that the algorithm is somewhat 
susceptible to noise when forming variable productions. 
Specifying a minimum support alleviates most of this 

problem, but human judgment is needed in specifying the 
level of support.  

Our future plans include work on second-order graph 
grammar inference, where preliminary results show prom-
ise. We may also consider work on probabilistic graph 
grammars. As future results warrant, we may allow vari-
ables to take on values that are not restricted to be single 
vertices. We also plan to investigate other ways to identify 
recursive structures, with focus on allowing the recursive 
non-terminal to be embedded in a subgraph, connecting 
with more than a single edge. We also plan to compare our 
approach to ILP and other competing systems. 
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