
MDL-Based Context-Free Graph Grammar Induction

Istvan Jonyer, Lawrence B. Holder and Diane J. Cook

Department of Computer Science and Engineering
University of Texas at Arlington

Box 19015 (416 Yates St.), Arlington, TX 76019-0015
E-mail: { jonyer | holder | cook} @cse.uta.edu

Abstract

We present an algorithm for the inference of context-free
graph grammars from examples. The algorithm builds on an
earlier system for frequent substructure discovery, and is
biased toward grammars that minimize description length.
Grammar features include recursion, variables and relation-
ships. We present an illustrative example, demonstrate the
algorithm’s ability to learn in the presence of noise, and
show real-world examples.

Introduction
Acquisition of grammatical knowledge is an important
machine learning task with applications in pattern
recognition, data mining and computational linguistics. In
this research we are concerned with the induction of graph
grammars due to the increased expressiveness of graphs
over the textual representations typically used for grammar
induction. We describe an algorithm for the inference of
context-free graph grammars—a set of grammar
production rules that describe a graph-based database.

Although textual grammars are useful, they are limited
to describing databases that can be represented as a
sequence. An example of such a database is a DNA
sequence. Most databases, however, have a non-sequential
structure, and many have significant structural
components. Relational databases are generally good
examples, but even more complex information can be
represented using graphs. Examples include circuit
diagrams and the world-wide web. Graph grammars can
sti ll represent the simpler feature vector type databases as
well as sequential databases.

Grammar induction has a long history. Recent work
includes learning string grammars with a bias toward those
that minimize description length (Langley and Stromsten
2000), inferring compositional hierarchies from strings in
the Sequitur system (Nevill-Manning and Witten 1997),
and learning search control from successful parses (Zelle
et al. 1994). Only a few algorithms exist for the inference
of graph grammars, however. An enumerative method for
inferring a limited class of context-sensitive graph
grammars is due to Bartsch-Spörl (1983). Other algorithms
utilize a merging technique for hyperedge replacement
grammars (Jeltsch and Kreowski 1991) and regular tree
grammars (Carrasco et al. 1998). Our approach is based on

Copyright © 2001, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

a method for discovering frequent substructures in graphs
driven by the MDL heuristic (Cook and Holder 2000).

The next section defines the class of context-free graph
grammars we are attempting to learn. Next, we describe
the graph grammar learning algorithm and give an
example. We then present experiments demonstrating the
effectiveness of the algorithm on artificial and real-world
data. The last section presents conclusions and future
work.

Context-Free Graph Grammars

We are concerned with graph grammars of the set-
theoretic approach, or expression approach (Nagl 1987).
Here a graph is a pair of sets G = �V, E� where V is the set
of vertices or nodes, and E ⊆ V × V is the set of edges.
Production rules are of the form S → P, where S and P are
graphs. When such a rule is applied to a graph, an
isomorphic copy of S is removed from the graph along
with all its incident edges, and is replaced with a copy of
P, together with edges connecting it to the graph. The new
edges are given new labels to reflect their connection to
the instance of S replaced in the graph. We are interested
in learning parse grammars, which applies the production
rules in reverse, i.e., replacing an instance of P with S.

A special case of the set-theoretic approach is the node-
label controlled grammar, in which S consists of a single,
labeled node (Engelfriet and Rozenberg 1991). This is the
type of grammar we are focusing on. In our case, S is
always a non-terminal, but P can be any graph, and can
contain both terminals and non-terminals. Since we are
going to learn grammars to be used for parsing, the
embedding function is trivial: external edges that are
incident on a vertex in the subgraph being replaced (P)
always get reconnected to the single vertex S.

Recursive productions are of the form S → P S. The
non-terminal S is on both sides of the production, and P is
linked to S via a single edge. The complexity of the
algorithm is exponential in the number of edges considered
between recursive instances, so we limit the algorithm to
one for now. Alternative productions are of the form S →
P1 | P2 | … | Pn, where S is a non-terminal and the Pi are
graphs. The non-terminal S can be thought of as a variable
having possible values P1, P2, …, Pn. We will refer to such
an S as a variable non-terminal, or simply variable. If Pi
are single vertices, then S is synonymous with a regular
non-graph discrete variable. It is also possible to generalize
such a production to numeric variables by representing
possible values via a numeric range: S → [Pmin … Pmax].

Relationship edges are logical components of the pro-
duction, in contrast to the structural components: nodes
and edges. Therefore, they cannot be a part of the input,
but can be part of grammar productions. Relationship
edges describe relationships between nodes, such as ‘equal
to’ , and in case of numeric-valued nodes ‘ less than or
equal to’ . See figures 3 and 5 for examples of graph
grammar production rules.

Graph Grammar Induction

Our approach to graph grammar induction, called Sub-
dueGL, is based on the Subdue approach (Cook and
Holder 2000) for discovering common substructures in
graphs. SubdueGL takes data sets in a graph format. The
graph representation includes the standard features of
graphs: labeled vertices and labeled edges. Edges can be
directed or undirected. When converting data to a graph
representation, typically objects and values are mapped to
vertices, and relationships and attributes are mapped to
edges.

Algor ithm
The SubdueGL algorithm follows a bottom-up approach to
graph grammar learning by performing an iterative search
on the input graph such that each iteration results in a
grammar production. When a production is found, the right
side of the production is abstracted away from the input
graph by replacing each occurrence of it by the non-
terminal on the left side. SubdueGL iterates until the entire
input graph is abstracted into a single non-terminal, or a
user-defined stopping condition is reached.

In each iteration SubdueGL performs a beam search for
the best substructure to be used in the next production rule.
The search starts by finding each uniquely labeled vertex
and all their instances in the input graph. The subgraph
definition and all instances are referred to as a substruc-
ture. The ExtendSubstructure search operator is applied to
each of these single-vertex substructures to produce sub-
structures with two vertices and one edge. This operator
extends the instances of a substructure by one edge in all
possible directions to form new instances. Subsets of
similar instances are collected to form new substructures.
SubdueGL also considers adding recursion, variables and
relations to substructures. These additions are described in
separate sections below.

The resulting substructures are evaluated according to
the minimum description length (MDL) principle, which
states that the best theory is the one that minimizes the
description length of the entire data set. The MDL princi-
ple was introduced by Rissanen (1989), and applied to
graph-based knowledge discovery by Cook and Holder
(1994). The value of a substructure S is calculated by
Value(S) = DL(S) + DL(G|S), where DL(S) is the descrip-
tion length of the substructure, G is the input graph, and
DL(G|S) is the description length of the input graph
compressed by the substructure. SubdueGL seeks to
minimize the value. Only substructures deemed the best by
the MDL principle are kept for further extension.

Recursion
Recursive productions are created by the RecursifySub-
structure search operator. It is applied to each substructure
after the ExtendSubstructure operator. RecursifySubstruc-
ture checks each instance of the substructure to see if it is
connected to any of its other instances by an edge. If so, a
recursive production is possible. The operator adds the
connecting edge to the substructure and collects all possib-
le chains of instances. If a recursive production is found to
be the best at the end of an iteration, each such chain of
subgraphs is abstracted away and replaced by a single ver-
tex. See figure 3 for an example of a recursive production.

Since SubdueGL discovers commonly occurring
substructures first and then attempts to make a recursive
production, SubdueGL can only make recursive produc-
tions out of lists of substructures that are connected by a
single edge, which has to have the same label between
each member substructure of the list. The algorithm is
exponential in the number of edges considered in the
recursion, so we limit SubdueGL to single-edge recursive
productions. Therefore, the system cannot yet induce
productions such as S → aSb.

Var iables
The first step towards discovering variables is discovering
commonly-occurring structures, since variability in the
data can be detected by surrounding data. If commonly-
occurring structures are connected to vertices with varying
labels, these vertices can be turned into variables. See
figure 5 for an example of a variable production (S3).

SubdueGL discovers variables inside the ExtendSub-
structure search operator. As mentioned before, SubdueGL
extends each instance of a substructure in all possible ways
and groups the new instances that are alike. After this step,
it also groups new instances in a different way. Those that
were extended from the same vertex by the same edge in
all instances, regardless of what vertex they point to, are
grouped together. Let (v1, e, v2) represent edge e from
vertex v1 to vertex v2. Vertex v1 is part of the original sub-
structure which was extended by e and v2. For variable
creation, instances are grouped using (v1, e, V), where V is
a variable (non-terminal) vertex whose values include the
labels of all matching v2’ s. The substructure so created is
then evaluated using MDL and competes with others for
top placement.

The variable V can have many values. It is possible to
create other substructures from a subset of these values
that may evaluate better according to the MDL principle.
Generating all subsets, however, is exponential in the
number of unique variable values. We employ a heuristic
based on the number of instances in which each unique
variable value occurs. The MDL principle prefers values
that are supported by many instances. Therefore, new sub-
structures are created by successively removing the value
with the lowest support. All these substructures compete
for top placement. If all the values of V are numeric, then
the variable’s range is represented using a minimum and
maximum value. The above heuristic results in a
progressive narrowing of this range.

Relationships
SubdueGL also introduces relationship edges into the
grammar. Relationship edges increase the expressive
power of a grammar by identifying vertices with labels that
are equivalent. In the case of numerical labels the less-
than-or-equal-to relationship is also possible via a directed
relationship edge.

Relationships are discovered after identifying variables.
At least one vertex participating in a relationship has to be
a variable non-terminal, since relationships between non-
variables are trivial. A relationship edge is identified by
comparing a newly discovered variable’s values in each
instance to every other vertex. If the same relationship
holds between the variable and another vertex in every
instance of the substructure, a relationship edge is created.
Figure 1 shows an example of a production that contains
two relationships. The relationship edges are marked with
dotted arrows and labeled ‘<=’ and ‘=’ .

Example
In this section we give an example of SubdueGL’s opera-
tion. Consider the input graph shown in figure 2. It is the
graph representation of an artificially generated domain. It
features lists of static structures (square shape), a list of a
changing structure (triangle shape), and some additional

random vertices and edges. For a cleaner appearance we
omitted edge labels in the figures. The edge labels within
the triangle-looking subgraph are ‘ t’ , in the square-looking
subgraph ‘ s’ , and the rest of the edges are labeled ‘next’ .

SubdueGL starts out by collecting all the unique vertices
in the graph and expanding them in all possible directions.
Let us follow the extension of vertex ‘ x’—keeping in mind
that the others are expanded in parallel. When vertex ‘x’ is
expanded in all possible directions, it results in 2-vertex
substructures, with edges (x, s, y), (x, s, z), (y, next, x), and
(x, next, r). The first two substructures rank higher, since
those have four instances and compress the graph better
than the latter two with only 2 and 1 instances respectively.

Applying the ExtendSubstructure operator three more
times results in a substructure having vertices { x, y, z, q}
and four edges connecting these four vertices. This

substructure has four instances. Being the biggest and most
common substructure, it ranks on the top. Executing the
RecursifySubstructure operator results in the recursive
grammar rule shown in figure 3. The production covers
two lists of two instances of the substructure.

The recursive production was constructed by checking
all outgoing edges of each instance to see if they are
connected to any other instance. We can see in figure 2
that the instance in the lower left is connected to the
instance on its right, via vertex ‘ y’ being connected to
vertex ‘ x’ . Same is the situation on the lower right side.
Abstracting out these four instances using the above
production results in the graph depicted in figure 4.

The next iteration of SubdueGL uses this graph as its

input graph to infer the next grammar rule. Looking at the
graph, one can easily see that the most common substruc-
ture now is the triangle-looking subgraph. In fact,
SubdueGL finds a portion of that simply by looking for
substructures that are exactly the same. This part is the
substructure having vertices { a, b} and edge (a, t, b). It has
four instances. Extending this structure further by an edge
and a vertex adds different vertices to each instance: ‘ c’ ,
‘d’ , ‘ e’ , and ‘ f’ . The resulting single-instance substructures
evaluate poorly by the MDL heuristic.

SubdueGL at this point generates another substructure
with four instances, replacing vertices ‘ c’ , ‘ d’ , ‘e’ , and ‘ f’
with a non-terminal vertex (S3) in the substructure, thereby
creating a variable. This substructure now has four
instances, and stands the best chance of getting selected for
the next production.

After the ExtendSubstructure operation, however,
SubdueGL hands the substructure to RecursifySubstructure
to see if any of the instances are connected. Since all four
of them are connected by an edge, a recursive substructure
is created which covers even more of the input graph,
having included three additional edges. Also, it is replaced
by a single non-terminal in the input graph, versus four
non-terminals when abstracting out the instances non-
recursively, one-by-one.

The new productions generated in this iteration are
shown in figure 5. Abstracting away these substructures
produces the graph shown in figure 6.

In the next iteration, SubdueGL cannot find any
recurring substructures that can be abstracted out to reduce

a

c b

a

d b

a

e b

a

f b

x

q z

y x

q z

y x

q z

y x

q z

y r

k

Figure 2. Input graph.

Figure 4. Input graph, parsed by the first production.

a

c b

a

d b

a

e b

a

f b

r

k

S1 S1

Figure 3. First production generated by SubdueGL.

x

q z

y S1 S1 x

q z

y

Figure 1. Graph grammar production with relationships.

air speed

visibility

lighting on

landing gear out
 Air Crash

yes

yes

1.5

220

= <= S ���������

the graph’s description length. The graph in figure 6,
therefore becomes the right side of the last production.
When this rule is executed, the graph is fully parsed.

Exper imental Results
We devised an experiment to show that SubdueGL does
not simply discover arbitrary grammars, but finds the most
relevant grammars. This proof-of-concept experiment
involved using a known graph grammar to generate a
graph and having SubdueGL infer the original graph
grammar from the graph at varying levels of noise. The
grammar we used had nine productions describing graph
structures of varying shapes and sizes. Two of these were
recursive, and four non-recursive. Three were variables
(discrete and continuous) with varying number values. We
also had non-terminals on the right side of productions. In
other words, we made it quite complex. Due to space
restrictions we do not show the grammar here.

The experimental process included the following steps:
(1) Generate graph from known grammar, (2) Corrupt the
graph by noise, (3) Use SubdueGL to infer a grammar
from the corrupted graph, (4) Compute the error by
comparing SubdueGL’s output with the original grammar.
Since the right side of each production is a graph, the error
is defined as the number of graph transformations (i.e.,
insert/delete vertex/edge or change label) needed to
transform the known grammar into the inferred grammar.

We corrupted the generated input graph from 0% up to
100% of noise in 5% increments. The noise introduced
was defined as the combination of two parameters: the
percentage of instances embedded into the graph to be
corrupted, and the percentage of a single instance to be
corrupted. For example, if we intend to introduce 10%
overall noise, we corrupt 31.6% of 31.6% of the instances
(31.6% squared being 10%).

Figure 7 shows the results, where the curve represents
the average of ten trials. At 0% noise SubdueGL always
found the original grammar exactly. We found that in the
presence of noise the algorithm has a tendency to add extra
values to variables. An argument to SubdueGL that
specifies a minimum support for variable values reduces
its sensitivity to noise. The minimum support specifies the
percentage of instances in which a unique variable value
has to appear to be included in a variable production. The
results shown in figure 7 were obtained using 10%
minimum support, although the results obtained without
specifying a minimum support were only slightly worse.
As the figure shows, the error stays below 10 transforma-
tions, with up to 35% noise.

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

Noise (%)

E
rr

o
r

(t
ra

n
s)

As a real-world example, we applied SubdueGL to pro-
tein sequence data. Specifically, we analyzed the primary
and secondary structure of the proteins myoglobin and
hemoglobin, respectively. These proteins are used widely
to i llustrate nearly every important feature of protein struc-
ture, function, and evolution (Dickerson & Geis, 1983).

S →→→→ S2 –> S3 –> S4 –> S5 –> S6 –> S7 –> S8 –> S9 –> S10 –> S11
 –> S12 –> S13 –> S14 –> S15 –> ALA –> S
S2 →→→→ VAL | LEU | SER | GLU | GLY | TRP | GLN | HIS |
 ALA | LYS | ASP | ILE | PHE | THR | ASN

S3 →→→→ VAL | LEU | SER | GLU | GLN | HIS | ALA | ASP |
 ILE | ARG | THR | MET | ASN
...

S20 →→→→ S21 –> S22 –> S23 –> S24 –> S25 –> S26 –> S27 –> LEU –> S20
S21 →→→→ VAL | GLY | GLN | ALA | LYS | ASP | PHE | MET | S
S22 →→→→ VAL | LEU | GLU | GLY | GLN | HIS | ALA | LYS |

 ILE | PHE | THR | MET | S
...

S30 →→→→ S31 –> S32 –> S33 –> S34 –> S35 –> S36 –> S37 –> S38 –> GLY
 –> S30
S31 →→→→ LYS | S | S10

S32 →→→→ SER | GLU | HIS | LYS | ASP | S
S33 →→→→ VAL | GLU | HIS | ILE | PRO | THR

S34 →→→→ VAL | GLU | TRP | ALA | ASP | PRO

S35 →→→→ GLY | ALA | THR

S36 →→→→ GLY | HIS | LYS | ASP | PHE | PRO

S37 →→→→ VAL | GLY | LYS | PHE | PRO | TYR

S38 →→→→ VAL | GLN | HIS | ALA | LYS | THR

S40 →→→→ S30 –> S30 –> S20 –> S –> HIS –> LYS –> LYS –> LYS

Figure 8. Partial grammar induced by SubdueGL on protein
primary-sequence data.

The primary structure of myoglobin is represented as a
sequence of amino acids, which have a three letter acro-
nym. These compose the vertices of the input graph, which
are connected by edges labeled ‘ next’ . The grammar
induced by SubdueGL is shown in figure 8, where graph
vertices are only shown by their labels. The arrow →→→→ is the
production operator, while –> signifies the edge ‘next’ in
the graph. For lack of space, we omitted a few variables
(S4 through S15, and S23 through S27). The expressive
power of the grammar is apparent at the first glance. Pro-
ductions S, S20, and S30 are recursive, while S40 contains
all these recursive rules followed by a static sequence of
amino acids. Rules S, S20, and S30 each contain a single
amino acid at the end of the chain which signifies a
recurrence of these amino acids with various combinations
of other amino acids in between. Productions S21, S22, S31,
and S32 are also interesting, as they describe regularities
among single amino acids, and a recursive sequence of

Figure 6. Input parsed by the
second and third productions.

r

k

S2

S1 S1

Figure 5. Second and third
productions by SubdueGL.

S2 a

b S3

S2

S3 c d e f

a

b S3

Figure 7. SubdueGL performance on artificial grammar in
the presence of noise.

amino acids. In the case of S31, it can be replaced by LYS,
S (a recurrent sequence) or S10 (another variable).

For the next example we use the secondary structure of
hemoglobin, which is represented in graph form as a
sequence of helices and sheets along the primary sequence.
Each helix is a vertex which are connected via edges
labeled ‘next’ . Each helix is encoded in the form ‘h_t_l’ ,
where h stands for helix, t is the helix type, and l is the
length. Part of the grammar identified by SubdueGL is
shown in figure 9. This grammar only involves helices of
type 1 (right-handed α-helix). This grammar can generate
the most frequently occurring helix sequences that are
unique to hemoglobin. In fact, when compared to the
grammars generated for myoglobin and other proteins, the
differences can be readily identified.

S →→→→ S2 –> S3 –> h_1_6 –> S4 –> h_1_19 –> h_1_8 –> h_1_18 –> S5
S2 →→→→ h_1_14 | h_1_15

S3 →→→→ h_1_14 | h_1_15

S4 →→→→ h_1_6 | h_1_1

S5 →→→→ h_1_20 | h_1_23

Figure 9. Partial grammar induced by SubdueGL on protein
secondary structure data.

Brazma et al. (1998) presented a survey of approaches to
automatic pattern discovery in biosequences. Context-free
grammars are superior to approaches surveyed there in
their ability to represent recursion and relationships among
variables.

Conclusions and Future Work

In this paper we introduced an algorithm, SubdueGL,
which is able to infer graph grammars from examples. The
algorithm is based on the Subdue system which has had
success in structural data mining in several domains.
SubdueGL focuses on context-free graph grammars. Its
current capabilities include finding static structures,
finding variables, relationships, recursive structures, and
numeric label handling.

We have implemented a concept learning version of
SubdueGL as well. It accepts positive and negative input
graphs and attempts to construct a grammar that describes
the positive graph well, while not describing the negative
graph. The value of substructure S is computed as
Value(S) = DL(S) + DL(G+|S) + DL(G–) – DL(G–|S),
where DL(S) is the description length of the substructure,
G+ is the positive input graph, G– is the negative input
graph. We are currently conducting experiments using
concept learning.

Despite the advantages of SubdueGL’s expressive
power, there is room for improvement. As mentioned
before, recursive productions can only be formed out of
recurring sequences using a single edge. At this point,
variable productions can only have single vertices on the
right side of the production. Even though the vertex can be
a non-terminal, there might be advantages to allowing
arbitrary graphs as well.

Our experiments show that the algorithm is somewhat
susceptible to noise when forming variable productions.
Specifying a minimum support alleviates most of this

problem, but human judgment is needed in specifying the
level of support.

Our future plans include work on second-order graph
grammar inference, where preliminary results show prom-
ise. We may also consider work on probabilistic graph
grammars. As future results warrant, we may allow vari-
ables to take on values that are not restricted to be single
vertices. We also plan to investigate other ways to identify
recursive structures, with focus on allowing the recursive
non-terminal to be embedded in a subgraph, connecting
with more than a single edge. We also plan to compare our
approach to ILP and other competing systems.

Acknowledgments
This research is partially supported by a grant from the
Defense Advanced Research Projects Agency and
managed by Rome Laboratory under contract F30602-01-
2-0570.

References
Bartsch-Spörl, B. 1983. Grammatical inference of graph

grammars for syntactic pattern recognition. Lecture Notes in
Computer Science, 153: 1-7.

Brazma, A., I. Jonassen, I. Eidhammer, D. Gilbert. 1998. Appro-
aches to automatic discovery of patterns in biosequences.
Journal of Computational Biology, Vol. 5, Nr. 2, 277-303.

Carrasco, R.C., J. Oncina, and J. Calera. 1998. Stochastic
inference of regular tree languages. Lecture Notes in Artificial
Intelligence, 1433: 187-198.

Cook, D.J. and L.B. Holder. 2000. Graph-based data mining.
IEEE Intelligent Systems, 15(2), 32-41.

Cook, D.J. and L.B. Holder. 1994. Substructure Discovery Using
Minimum Description Length and Background Knowledge.
Journal of Artificial Intelligence Research, Volume 1, 231-255

Dickerson, R.E. and I. Geis. 1982. Hemoglobin: structure,
function, evolution, and pathology. Benjamin/Cummings Inc.

Engelfriet, J. and G. Rozenberg. 1991. Graph grammars based on
node rewriting: an introduction to NLC grammars. Lecture
Notes in Computer Science, 532, 12-23.

Jeltsch, E. and H.J. Kreowski. 1991. Grammatical inference
based on hyperedge replacement. Lecture Notes in Computer
Science, 532: 461-474.

Langley, P. and Stromsten, S. 2000. Learning context-free
grammars with a simplicity bias. Proceedings of the Eleventh
European Conference on Machine Learning, 220-228.
Barcelona: Springer-Verlag.

Nagl, M. 1987. Set theoretic approaches to graph grammars. In
H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors,
Graph Grammars and Their Application to Computer Science,
volume 291 of Lecture Notes in Computer Science, 41-54.

Nevill-Manning, C. G. and I. H. Witten. 1997. Identifying hierar-
chical structure in sequences: A linear-time algorithm. Journal
of Artificial Intelligence Research, 7, 67-82.

Rissanen, J. 1989. Stochastic Complexity in Statistical Inquiry.
World Scientific Company.

Zelle, J. M., R. J. Mooney, and J. B. Konvisser. 1994. Combining
top-down and bottom-up methods in inductive logic
programming. Proceedings of the Eleventh International
Conference on Machine Learning, 343-351.

