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ABSTRACT
Graphs are a natural way to represent multi-relational data
and are extensively used to model a variety of application do-
mains in diverse fields ranging from bioinformatics to home-
land security. Often, in such graphs, certain subgraphs are
known to possess some distinct properties and graph pat-
terns in the proximity of these subgraphs can be an indicator
of these properties. In this work we focus on the task of min-
ing in the proximity of subgraphs, known to possess certain
distinct properties and identify patterns which distinguish
these subgraphs from other subgraphs without these proper-
ties. This task is novel and of considerable interest as it can
facilitate the prediction of previously unknown subgraphs
possessing the properties under consideration in the graph
and can lead to a better understanding of the application
domain. We characterize the task of mining in the prox-
imity of subgraphs as a supervised learning problem and
present a heuristic algorithm for the same. Experimental
comparison with the ILP system CProgol on real world and
artificial datasets provides a strong indication of the abil-
ity and viability of the approach in uncovering interesting
patterns.

1. INTRODUCTION
Recently, graph-based data mining or the use of a graph

based representation for multi-relational data and the min-
ing of interesting graph patterns has received a considerable
amount of attention by the data mining community. As a
result, a number of approaches have been developed which
have achieved promising results in uncovering interesting
patterns in biological networks [24], social networks[15] and
the world wide web [21]. A concise overview of the cur-
rent work in in the field can be achieved by categorizing
it according to the types of tasks, the types of graph data
and the approaches in graph-based data mining. There are
two fundamentally different groups of tasks in graph-based
data mining, namely those involving supervised learning and
those involving unsupervised knowledge discovery. While
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the tasks involving supervised learning are concerned with
inducing classifiers from graph data, the tasks involving un-
supervised knowledge discovery are concerned with finding
regularities in graph data. Graph data can be in two ma-
jor forms, namely in the form of a single graph or a set of
separate graph transactions which are also called examples.
Approaches to graph-based data mining can be classified in
six major categories, namely the mathematical graph theory
based approaches, the greedy search based approaches, the
inductive logic programming approaches, the probabilistic
or statistical approaches, the inductive database approaches
and the kernel function based approaches. We now discuss
each of these approaches, their application to supervised
learning and unsupervised knowledge discovery and the type
of graph data they deal with.

Mathematical graph theory based approaches have been
extensively applied to unsupervised knowledge discovery
from graph data. These approaches mainly deal with graph
data in the form of transactions and mine a complete set of
graph patterns, mainly using a support or frequency mea-
sure. The initial work in this area was the AGM[6] sys-
tem which uses the Apriori level-wise approach. FSG[12]
takes a similar approach and further optimizes the algo-
rithm for improved running times. gFSG [11] is a variant
of FSG which enumerates all geometric subgraphs from the
database. gSpan[25] uses DFS codes for canonical label-
ing and is much more memory and computationally efficient
than the previous approaches. Instead of mining all sub-
graphs, CloseGraph[26] only mines closed subgraphs. A
graph G is closed in a dataset if there exists no super-
graph of G that has the same support as G. Gaston [18]
efficiently mines graph datasets by first considering frequent
paths which are transformed to trees which are further trans-
formed to graphs. FFSM [5] is a graph mining system which
uses an algebraic graph framework to address the underlying
problem of subgraph isomorphism.

In comparison to mathematical graph theory based ap-
proaches which are complete, greedy search based ap-
proaches use heuristics to evaluate the solution. The two
pioneering works in the field are Subdue[1] and GBI[13].
Subdue uses MDL-based compression heuristics, and has
been applied to learning predictive as well as descriptive
models. While learning descriptive models, Subdue can deal
with both the single graph as well as the graph transactions
category. While learning predictive models, Subdue mainly
deals with the graph transactions category. Recently, some
work has been pursued for learning predictive models in the
single graph category[22]. In contrast to Subdue which uses



MDL-based compression heuristics, GBI uses an empirical
graph size-based heuristic. The empirical graph size defini-
tion depends on the size of the extracted patterns and the
size of the compressed graph. GBI learns predictive models
in the graph transactions category.

Another methodology in this field is that of inductive logic
programming. Although ILP cannot be considered to be
a mainstream approach in graph-based data mining, when
graph data is expressed as a collection of facts represented
in Horn clause logic, inductive logic programming systems
like FOIL[19], Progol[14] and WARMR[2] can be applied to
supervised learning as well as unsupervised knowledge dis-
covery from graph data. As the graph data is represented as
a set of Horn clauses, there is little difference between the
single graph category and the graph transactions category.
Thus this approach can be applied to both of the categories.
This approach has the advantage of the extensive descriptive
power of Horn clause logic and ILP systems are capable of
learning any multi-relational concept which can be expressed
in Horn clause logic by providing the necessary background
knowledge. This approach, due to its extensive descriptive
power also tends to have a significantly lower performance
as compared to graph-based systems while learning multi-
relational concepts which do not require the extensive de-
scriptive power, as shown by a recent empirical study[9].

Probabilistic or statistical approaches in graph-based data
mining such as probabilistic relational models [3], relational
probability trees [16], and relational Bayesian classifiers [17],
focus on supervised learning from both the single graph as
well as the graph transactions category of data. These ap-
proaches address tasks [4] such as entity resolution, group
detection, link prediction by applying statistical inference
procedures to graph data in light of difficulties such as au-
tocorrelation [7], and degree disparity [8].

Another promising direction in the field of graph-based
data mining is that of inductive databases which are a new
generation of databases that are not only capable of deal-
ing with data but also with patterns or regularities within
the data. Data mining in such a framework is an interac-
tive querying process. This approach mainly performs su-
pervised learning from the graph transactions category of
data. The inductive database framework is especially inter-
esting for bioinformatics because of the large and complex
databases that exist in this domain and the lack of methods
to gain scientific knowledge from them. The pioneer work in
this field was the MolFea system [20], which is based on the
level-wise version space algorithm. MolFea is the Molecular
Feature miner that mines for linear fragments in chemical
compounds.

Lastly, the kernel function based approaches have been
used to a certain extent for mining graph datasets. These
approaches focus on supervised learning from the graph
transactions category of data. The kernel function defines
a similarity between two graphs. When high dimensional
data is represented in linear space, the function to learn
is difficult in this space. We can map the linear data to
nonlinear, space and the problem of learning in that high
dimensional space becomes learning scalar products. Ker-
nel functions make computation of such scalar products very
efficient. The key is finding efficient mapping functions and
good feature vectors. The pioneering approach that applied
kernel functions to graph structures is the diffusion kernel
[10].

2. TASK DESCRIPTION
Having presented a brief overview of the current work in

graph-based data mining, we introduce the task of mining
in the proximity of subgraphs. Consider an example from a
money laundering domain which comprises data about indi-
viduals, institutions and the transfer of funds among them.
This data is multi-relational in nature and a graph-based
representation provides a natural way to model this domain.
Figure 1 (a) shows the graph-based representation of the
fraud detection domain. Here, vertices represent individ-
uals and institutions while edges represent the transfer of
funds among individuals and institutions.

Now, in such a graph assume that we know certain individ-
uals, institutions and the transactions between them to be
fraudulent in nature. We also know certain individuals, in-
stitutions and the transactions between them to be innocent
in nature. These individuals and institutions along with the
transfer of funds among them can be viewed as subgraphs
in the graph representation of the multi-relational data from
the money laundering domain. What is peculiar about these
subgraphs is that they can be viewed to either possess or lack
the property of being fraudulent in nature. We refer to these
subgraphs as sites. Furthermore, the subgraphs known to
possess some distinct properties are referred to as positive
sites and the subgraphs known to lack some distinct prop-
erties are referred to as negative sites. Figure 1 (b) shows
two subgraphs representing known fraudulent individuals,
institutions and the transfer of funds between them (posi-
tive sites) on the graph. Two other subgraphs representing
known innocent individuals, institutions and the transfer of
funds between them (negative sites) are also denoted on the
graph. Three important points must be noted. Firstly, the
site, as a whole, is known to possess or lack a distinct prop-
erty. The individual vertices and edges which form the site
do not possess the property under consideration. Secondly,
all the sites, positive or negative, may or may not be isomor-
phic to each other. Lastly, sites may consist of a connected
or disconnected subgraphs, although our example only il-
lustrates sites which consist of connected subgraphs for the
sake of simplicity.

Now, given this graph containing positive and negative
sites, we would like to identify the characteristics that dis-
tinguish the positive sites from the negative sites. This
would serve two purposes. Firstly, the characteristics that
distinguish the positive sites from the negative sites could
help identify other, previously unknown positive sites in the
graph. In our example this would be previously unknown,
possibly fraudulent, individuals, institutions and the trans-
actions among them. Secondly, the characteristics would
help further our understanding of the domain. In our ex-
ample this would be insights into the modus oprandi of
individuals and institutions engaged in money laundering
activities. It is intuitive that the characteristics which dis-
tinguish positive sites from negative sites might be certain
graph patterns in the proximity of sites. In our example it is
likely as the transfer of funds among fraudulent individuals
and institutions have a pattern different from the transfer
of funds between innocent individuals and institutions. Fig-
ure 1 (c) shows a graph pattern which distinguishes positive
sites from negative sites in the graph. Figure 1 (d) shows
a previously unknown positive site, that is, possibly fraudu-
lent individuals and institutions and the transactions among
them, identified using the pattern shown in Figure 1 (c).
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Figure 1: An example from the money laundering domain illustrating the task of mining in the proximity
of subgraphs (a)Graph-based representation of the money laundering domain. Vertices represent individuals
and institutions, edges represent the transfer of funds among individuals and institutions. (b)Positive and
negative sites in the graph. Subgraphs representing known fraudulent individuals, institutions and the
transfer of funds among them are positive sites. Subgraphs representing known innocent individuals, xs
institutions and the transfer of funds among them are negative sites. (c)Distinguishing graph pattern in the
proximity of the positive sites absent in the proximity of the negative sites. (d)Previously unknown, possibly
fraudulent individuals, institutions and transfer of funds between them, identified by using the discovered
pattern.

The example discussed above presents a quick overview of
the task of mining in the proximity of subgraphs. Our sur-
vey indicates that this task could have potential applications
in a variety of multi-relational domains. An example would
be the application of the task in identifying previously un-
known terrorist cells or threat groups using a communication
graph and known terrorist cells. Another example would be
the application of the task in identifying previously unknown
functional modules from gene interaction graphs and known
functional modules. Among the current approaches for min-
ing graph-based data, only the inductive logic programming
approach can be applied to this task to a certain extent. ILP
systems can learn predicate definitions analogous to a site
in the case where all sites are isomorphic to each other. Our
experiments show that our approach tends to perform better
than ILP while learning large concepts and while learning
from large graphs. In the case where the sites consist of non-
isomorphic subgraphs with varying number of vertices and
edges, ILP performs poorly as this involves learning a pred-
icate definition containing a list which can have a variable
length, and is computationally expensive.

In this work, we characterize this task as a supervised
learning problem and present a heuristic algorithm for the
same. Experimental comparison with the ILP system CPro-
gol on real world and artificial datasets evaluate the ability
of the approach in uncovering interesting patterns. The rest
of the paper is organized as follows. In Section 3, we for-
malize the task of mining in the proximity of subgraphs. In
Section 4, we present a heuristic algorithm for the task and
in Section 5, we present experimental results on a number of
real world and artificially generated datasets. Conclusions
and future work are presented in Section 6.

3. TASK FORMULATION

In this section we formalize the task of mining in the prox-
imity of subgraphs.

Our graph-based representation of multi-relational data
consists of a single graph where entities are represented as
vertices and the relationships between entities are repre-
sented as edges. Note that this graph may be connected
or disconnected. Most application domains have different
types of entities and relations, hence in our graph-based
representation, the vertices and edges have labels associated
with them. Relations between entities can be directional or
non-directional in nature. For example, the transfer of funds
from one person to other is directional in nature while a per-
son living in the same city block as some other person would
be non-directional in nature. Hence, in our graph-based rep-
resentation, edges can be directed or undirected. Note that
it is possible to model non-directional relations using two
directed edges, but we avoid this representation for the sake
of simplicity. Lastly, our graph-based representation does
not allow self loops and multiple edges. Such a graph can
be formally defined as G = (V, D, U, ΣV , ΣD, ΣU , lV , lD, lU )
where,

1. V denotes the finite set of vertices,

2. D denotes the set of directed edges such that D ⊆
V × V ,

3. U denotes the set of undirected edges such that U ⊆
V × V ,

4. ΣV denotes the finite alphabet of vertex labels,

5. ΣD denotes the finite alphabet of directed edge labels,

6. ΣU denotes the finite alphabet of undirected edge la-
bels,



7. lV denotes the finite total function lV : V → ΣV ,

8. lD denotes the finite total function lD : D → ΣD, and

9. lU denotes the finite total function lU : U → ΣU .

We now define subgraphs for our graph-based representa-
tion. Let G = (V, D, U, ΣV , ΣD, ΣU , lV , lD, lU ) and G′ =
(V ′, D′, U ′, Σ′

V , Σ′
D, Σ′

U , l′V , l′D, l′U ) be two graphs. G′ is de-
fined to be a subgraph of G iff the following hold,

1. V ′ ⊆ V ,

2. D′ ⊆ D and

3. U ′ ⊆ U .

We now define graph isomorphism for our graph-based rep-
resentation. Let G = (V, D, U, ΣV , ΣD, ΣU , lV , lD, lU ) and
G′ = (V ′, D′, U ′, Σ′

V , Σ′
D, Σ′

U , l′V , l′D, l′U ) be two graphs. G′

is defined to be isomorphic to G iff there exists a bijection
m : V ′ → V such that the following hold,

1. ∀p ∈ V ′, (l′V (p) = lV (m(p))),

2. ∀p, q ∈ V ′, ((p, q) ∈ D′ ⇔ ((m(p), m(q)) ∈ D),

3. ∀u ∈ D′, (l′D(u) = lD(m(u))),

4. ∀r, s ∈ V ′, ((r, s) ∈ U ′ ⇔ ((m(r), m(s)) ∈ U), and

5. ∀v ∈ U ′, (l′U (v) = lU (m(v))).

Using these notions we can now define the task of mining
in the proximity of subgraphs. Given a graph G and a set
of subgraphs SP , which we refer to as positive sites, and
another set of subgraphs SN , which we refer to as negative
sites, find a subgraph c of graph G such that the following
holds,

1. ∀p ∈ SP ,∃i such that the following hold,

(a) p is a subgraph of i

(b) i is a subgraph of G

(c) i is isomorphic to c

2. ∀n ∈ SN , @j such that the following hold,

(a) n is a subgraph of j

(b) j is a subgraph of G

(c) j is isomorphic to c

We refer to the subgraph c as a concept. Intuitively, this
task can be viewed as identifying a subgraph such that a
subgraph isomorphic to this subgraph is present and is con-
nected to every positive site and there does not exist a sub-
graph, isomorphic to this subgraph and connected to any of
the negative sites.

4. ALGORITHM AND ANALYSIS
In this section we present MPS (Mining in the Proxim-

ity of Subgraphs), a computationally constrained, heuristic
algorithm for the task of learning mining in the proximity
of subgraphs. MPS accepts a graph and a set of positive
and negative sites denoted on this graph as input. MPS
generates a list of subgraphs to approximate the concept
subgraph, as defined in Section 2. Intuitively, this can be
seen as generating a set of subgraphs such that subgraphs

isomorphic to these subgraphs are mostly present and con-
nected to positive sites and subgraphs isomorphic to these
subgraphs are rarely connected to any of the negative sites.
MPS is presented in Algorithm 1. An illustration of the
working of MPS, using a example from the money launder-
ing domain is given in Figure 2.

MPS performs a beam search which begins by generating
a list of the subgraph instances which form the positive and
negative sites. These subgraph instances are extended by
one vertex and one edge or one edge in all possible ways,
as guided by the input graph, to generate the extended
subgraph instance list. Subgraph instances in this list are
then grouped to form a list of isomorphic subgraph instance
groups. Every isomorphic subgraph instance group corre-
sponds to a subgraph and this subgraph is then evaluated
according to the following measure.

V (g) =
|Pg|+ |Ng|
|SP |+ |SN |

where,

1. g is the subgraph,

2. Pg = {r | g is a subgraph of r and ∃g ∈ SP },

3. Ng = {s | g is a subgraph of s and @g ∈ SN},

Intuitively, this evaluation measure can be viewed as the
number of positive sites to which an instance of the sub-
graph is connected added to the number of negative sites
which do not have an instance of the subgraph connected to
it, divided by the total number of positive and negative sites.
After evaluating each subgraph corresponding to an isomor-
phic instance group, only the best groups are retained for
further expansion. The parameter Beam, determines how
many groups are retained for further expansion. The pro-
cess of expansion, evaluation and retaining the best instance
groups continues until the constraint enforced by the Limit
parameter is exceeded. After this the subgraph correspond-
ing to the best instance group is added to the list of best
subgraphs and the positive sites which have an instance of
the subgraph connected to it are removed from the list of
positive sites. The procedure of expansion, evaluation and
retaining the best instance groups then continues on the
updated positive sites. This process continues until the con-
straint enforced by the Iterations parameter is exceeded or
there are no more positive sites. Finally, the algorithm re-
ports the list of best subgraphs.

The MPS algorithm is constrained to be polynomial by
the Limit and the Beam parameters in the case where the
graph isomorphism check is also polynomial. At present,
graph isomorphism has not been proven to be either an NP-
complete problem nor a P-problem although it is known to
be polynomial in most cases except for some instances of
unconstrained graphs[23].

5. EXPERIMENTAL RESULTS
We analyzed the performance of the MPS algorithm by

comparing it with the ILP system CProgol on a number of
real and artificially generated datasets. In this section we
briefly discuss CProgol, our experiments and their results.
The MPS algorithm was implemented in CMU Common
Lisp 19c and our experiments were performed on 2.80 GHZ
Intel Xeon server with 2GB main memory running Suse 9.1.



(a) Identifiers assigned to vertices and edges. (b) Important steps in MPS algorithm.

Figure 2: Illustration of the MPS algorithm using an example from the money laundering domain. MPS
begins with the initialization of the list of subgraphs from the sites. This is followed by the expansion of
subgraphs, the grouping of isomorphic subgraphs, the evaluation of isomorphic subgraph groups and retention
of the best subgraph groups. This process continues until the computational constraints are exceeded.

Algorithm 1 MPS

Input: G, SP , SN , Iterations, Beam, Limit
Output: Lc

1: IterationCount← 0;
2: repeat
3: LimitCount← 0;
4: BestSubgraph← φ;
5: BestSubgraphV alue← 0
6: CurrInstanceList← SP ∪ SN ;
7: repeat
8: ExtendedInstanceList← EXTEND every instance in CurrInstanceList in possible ways;
9: repeat

10: CurrInstance ← FIRST element of ExtendedInstanceList;
11: CurrInstanceGroup← REMOVE all subgraph instances in ExtendedInstanceList

isomorphic to CurrInstance;
12: CurrSubgraph← EXTRACT subgraph from CurrInstance;
13: CurrSubgraphV alue← EVALUATE the value of CurrSubgraph;
14: if CurrSubgraphV alue > BestSubgraphV alue then
15: BestSubgraph← CurrSubgraph;
16: BestSubgraphV alue← CurrSubgraphV alue;
17: end if
18: INSERT CurrInstanceGroup in InstanceGroupList, order by CurrSubgraphV alue;
19: INCREMENT LimitCount;
20: until (ExtendedInstanceList 6= φ) and (LimitCount ≤ Limit)
21: CurrInstanceList← APPEND first Beam instance groups in InstanceGroupList;
22: until (CurrinstanceList 6= φ) and (LimitCount ≤ Limit)
23: INSERT BestSubgraph in Lc;
24: SP ← SP− COVERED(BestSubgraph);
25: INCREMENT IterationCount;
26: until (SP 6= φ) and (IterationCount ≤ Iterations)
27: return Lc



5.1 CProgol
CProgol[14] is an ILP system, characterized by the use

of mode-directed inverse entailment and a hybrid search
mechanism. Inverse entailment is a procedure which gen-
erates a single, most specific clause that, together with the
background knowledge, entails the observed data. The in-
verse entailment in CProgol is mode-directed, that is, it uses
mode definitions. A mode declaration is a constraint which
imposes restrictions on the atoms and their arguments ap-
pearing in a hypothesis clause by,

1. Determining which atoms can occur in the head and
the body of hypotheses.

2. Determining which arguments can be input variables,
output variables or constants.

3. Determining the number of alternative solutions for
instantiating the atom.

The user-defined mode declarations aid the generation of
the most specic clause. CProgol first computes the most
specific clause which covers the seed example and belongs
to the hypothesis language. The most specific clause can
be used to bound the search from below. The search is
now bounded between the empty clause and the most spe-
cific clause. The search proceeds within the bounded search
space in a general-to-specific manner. The search is a hybrid
search, because it is a general-to-specific search bounded
from below with respect to the most specific clause. The
search strategy is an A* algorithm which is guided by a
weighted compression and accuracy measure. The A* search
returns a clause which covers the most positive examples and
maximally compresses the data. Any arbitrary Prolog pro-
gram can serve as background knowledge for CProgol. The
mode denitions and the background knowledge together de-
fine a hypothesis language. The hypothesis space explored
by CProgol consists of every hypothesis defined by the hy-
pothesis language.

5.2 Real Datasets
Our experimentation with real datasets involved seven

tasks on two datasets extracted from the Internet Movie
Database (www.imdb.com). The first dataset consists of
data about movie sequels. A sequel is a movie that follows
another movie and contains elements of the previous movie
like same characters and settings. For example the movie
Shrek 2 is a sequel of the movie Shrek. We identified 107
movies and their sequels and then extracted the actors, di-
rectors and writers of each of these movies form the IMDb.
This data was then represented as a graph, where movies,
actors, directors and writers were represented as vertices and
a person acting, directing or writing a particular movie was
represented by an edge between a person and the movie.
Figure 3 illustrates this representation of movie data using
a graph.

The second dataset consists of data about movie trilogies.
A trilogy is a set of three movies involving some of the same
characters and a continued story line. An example would
be the movies Matrix, Matrix Reloaded and Matrix Revolu-
tions which form a trilogy. We identified 53 movie trilogies
and extracted the actors directors and writers of each of
the movies from the IMDb. This data was represented as a
graph in a manner similar to the movie sequel dataset, as
shown in Figure 3.

Figure 3: Graph based representation of the IMDB
domain.

Figure 4: Results on tasks from IMDB domain.
An asterisk indicates significantly different perfor-
mance.

Our first task involved learning the concept of a sequel
from the movie sequel dataset given two movies which com-
prise a sequel as positive sites and two movies which do not
form a sequel as negative sites. This is illustrated in Figure
5 (a). Our second task involved learning the concept of a
trilogy from the movie trilogy dataset given three movies
which comprise a trilogy as positive sites and three movies
which do not form a trilogy as negative sites. This is il-
lustrated in Figure 5 (b). The third task involved learning
the concept of a trilogy from the movie trilogy dataset given
two movies and an actor in a trilogy as positive sites and
two movies and an actor which do not form a trilogy as
negative examples. This is illustrated in Figure 5 (c). The
next task involved learning the concept of trilogy given only
two movies in the trilogy as positive sites and two movies
which do not fall in a trilogy as negative examples. This is
illustrated in Figure 5 (d). The fifth task involved learning
the concept of trilogy given two different kinds of sites. The
first site consisted of three movies as in Figure 5 (b) and the
second site consisted of two movies and a actor as in Figure
5 (c). The sixth task involved learning the concept of trilogy
given three different kinds of sites. The first site consisted
of three movies as in Figure 5 (b), the second site consisted
of two movies and a actor as in Figure 5 (c) and the third
site consisted of two movies as in Figure 5 (d). The final
task involved learning core characters in a trilogy given an
actor and a movie. This is illustrated in Figure 5 (e). Core
characters are characters which have an important part in
the story line of the trilogy. For example, the characters of
Neo, Trinity and Morpheus are core characters in the Ma-
trix trilogy. It must be noted that in all the tasks mentioned
above, the negative sites can be two movies, three movies
or an actor and two movies which do not form a sequel or
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Figure 5: Sites and concepts learned on the tasks from IMDB domain. (a)Site for learning Sequel. (b)Type
1, two movies. (c)Type 2, Two movies and an actor. (e)Type 3, Three movies. (d)Site for learing core actors
in a trilogy. (e)Concept learnt for Sequel. (f)Concept learnt for trilogy. (g)Concept learnt for core actors in
a trilogy.

a trilogy, depending on the task. Due to this there can be
a very large number of negative sites (all combinations of
actors and movies). For each task we randomly selected a
subset of all these negative sites, keeping the number of neg-
ative sites selected equal to the number of positive sites for
the task.

We evaluated the MPS on each of these tasks by per-
forming a 3 fold cross validation on each of the task men-
tioned above. As a baseline, we ran CProgol on each of the
tasks. For tasks 1,2,3,4 and 7 CProgol was provided with
mode definitions to learn predicates sequel(movie, movie),
trilogy(movie, movie, movie), trilogy(actor, movie, movie),
trilogy(movie, movie) and core(actor, movie) respectively.
For tasks 5 and 6, since the sites are not isomorphic it is not
possible to formulate the problem in this way. This is be-
cause a site representing a trilogy can either be three movies
or an actor and two movies in task 5 and three movies or
an actor and two movies or just two movies in task 6. We
formulate this problem as learning the predicate trilogy(A)
where A is a list of entities where entities can be actors or
movies and the number of entities can vary in length. The
appropriate mode definitions to formulate the task in this
manner were provided to CProgol for tasks 5 and 6.

The results are presented in Figure 4. The performance
of MPS was found to be comparable to CProgol for tasks
1,2,3,4 and 7. For tasks 5 and 6 MPS performed significantly
better than CProgol. The concepts learned by MPS are
presented in Figure 5 (f to h).

It can be seen that in each task the concept learned by
MPS not only achieves high accuracy but also uncovers an
interesting property about the domain. CProgol has a lower
performance in tasks 5 and 6 where it has to learn a pred-
icate containing a list which can be computationally more
expensive than learning a predicate containing a fixed num-
ber of atoms. These results indicate that the performance
of MPS is comparable to CProgol while learning from sites
isomorphic to each other. However in the general case where
the sites can be subgraphs of arbitary size, MPS can out-
perform CProgol.

5.3 Artificial Datasets
We systematically analyzed the MPS algorithm by com-

paring its performance with CProgol on a number of artifi-
cially generated datasets. We identified three factors which
would have a major effect on the performance of the algo-
rithm, namely, the size of the graph, the number of sites and
the size of the site. For simplicity, we measure graph size
and site size as the number of edges. Our artificial graph
generator accepts three parameters namely the size of the

graph, the size of the site and the number of sites and gen-
erates a graph with the given number of sites, half of which
are positive and half negative. The number of vertices, the
vertex labels and the edge labels are chosen by the genera-
tor so as to satisfy user defined parameters. The artificial
graph generator also generates an equivalent logic represen-
tation of the graph dataset consisting of predicates such as
vertex(id, label), edge(id, id, label) and site(id, id) which we
use for our experimentation with CProgol. Note that for
these experiments all the generated sites were isomorphic
and the learning problem could be formulated as learning
a single predicate. Also note that we use half of the sites
for training and half for testing and every result is an aver-
age over three runs. In each of our experiments we generate
datasets by holding two parameters constant and vary the
third parameter. The performance of MPS and CProgol is
then measured on the datasets. Since MPS is implemented
in Common Lisp and CProgol in C, we measure the num-
ber of hypotheses explored by each algorithm instead of the
runtime. The number of hypotheses explored by each sys-
tem can be easily found by counting the number of times
the evaluation function is called in each algorithm.

Figures 6 (a) and 6 (b) show the accuracy and the number
of hypotheses explored by MPS and CProgol with increas-
ing size of graph with the number of sites and the size of
the site kept constant. Figures 6 (c) and 6 (d) show the
accuracy and the number of hypotheses explored by MPS
and CProgol with increasing number of sites with the graph
size and site size kept constant. Figures 5 (e) and 5 (f)
show the accuracy and the number of hypotheses explored
by MPS and CProgol with increasing size of site with the
graph size and number of sites kept constant. We observe
that MPS achieves higher accuracy than CProgol as the size
of the concept (number of edges or relations in the concept)
grows. CProgol has to explore an increasingly larger number
of hypotheses than Subdue as the size of the concept grows.
MPS achieves an increased accuracy which is comparable to
CProgol as the number of sites are increased. CProgol has
to explore a larger number of hypotheses than MPS as the
number of sites are increased. MPS achieves an increased ac-
curacy which is comparable to CProgol as the size of the sites
(number of edges or relations in the site) increases. CProgol
has to explore an increasingly larger number of hypotheses
than MPS as the as the size of the sites (number of edges
or relations in the site) increases. The results indicate that
MPS can outperform CProgol while learning large concepts
(measured as the number of relations) and while learning
from large relational datasets (measured as the number of
relations).
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Figure 6: Results on the artificial datasets.

6. CONCLUSIONS AND FUTURE WORK
We identified the novel task of mining in the proximity of

subgraphs, known to possess certain distinct properties and
identify patterns which distinguish these subgraphs from
other subgraphs without these properties. We presented
MPS, a heuristic algorithm to address the task. Experimen-
tal comparison with the ILP system CProgol on real world
and artificial datasets indicate the ability of the approach in
uncovering interesting patterns.

MPS is currently limited to discovering exact graph pat-
terns in the proximity of subgraphs. Discovering inexact
graph patterns which are approximately present in the prox-
imity of given subgraphs would allow MPS to function more
robustly in most real world domains. As a part of our future
work we plan on extending the algorithm for discovering in-
exact graph patterns.
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