Qualitative Comparison of Graph-based and Logic-based
Multi-Relational Data Mining: A Case Study

Nikhil S. Ketkar
University of Texas at Arlington

ketkar@cse.uta.edu

ABSTRACT

The goal of this paper is to generate insights about the dif-
ferences between graph-based and logic-based approaches to
multi-relational data mining by performing a case study of
graph-based system, Subdue and the inductive logic pro-
gramming system, CProgol. We identify three key factors
for comparing graph-based and logic-based multi-relational
data mining; namely, the ability to discover structurally
large concepts, the ability to discover semantically compli-
cated concepts and the ability to effectively utilize back-
ground knowledge. We perform an experimental comparison
of Subdue and CProgol on the Mutagenesis domain and var-
ious artificially generated Bongard problems. Experimental
results indicate that Subdue can significantly outperform
CProgol while discovering structurally large multi-relational
concepts. It is also observed that CProgol is better at learn-
ing semantically complicated concepts and it tends to use
background knowledge more effectively than Subdue.

1. INTRODUCTION

Multi-relational data mining (MRDM)[4] is a subfield of
data mining which focuses on knowledge discovery from re-
lational databases comprising multiple tables. Representa-
tion is a fundamental as well as a critical aspect in the pro-
cess of discovery and two forms of representation, namely
the graph-based representation and the logic-based repre-
sentation, have been used for MRDM. Logic-based MRDM
popularly known as Inductive Logic Programming (ILP) [8]
is characterized by the use of logic for the representation
of multi-relational data. ILP systems represent examples,
background knowledge, hypotheses and target concepts in
Horn clause logic. The core of ILP is the use of logic for rep-
resentation and the search for syntactically legal hypothe-
ses constructed from predicates provided by the background
knowledge. ILP systems such as FOIL [12], CProgol [9],
Golem[11] and WARMR[3] have been extensively applied to
supervised learning and to a certain extent to unsupervised
learning.

This paper appears in the Proceedings of the Fourth International Work-
shop on Multi-Relational Data Mining (MRDM-2005), August 21, 2005,
Chicago. The proceedings were edited by SaSo DZeroski and Hendrik Bloc-
keel. The paper is published here with the permission of the authors, who
retain the copyright of this material.

Lawrence B. Holder
University of Texas at Arlington

holder@cse.uta.edu

Diane J. Cook
University of Texas at Arlington

cook@cse.uta.edu

Graph-based approaches are characterized by representa-
tion of multi- relational data in the form of graphs. Graph-
based approaches represent examples, background knowl-
edge, hypotheses and target concepts as graphs. The core
of graph-based approaches is the use of a graph-based rep-
resentation and the search for graph patterns which are fre-
quent or which compress the input graphs or which distin-
guish positive and negative examples. Graph-based MRDM
systems such as Subdue[2], FSG[6], gSpan[16], GBI[7],
and AGMI5] have been extensively applied to unsupervised
learning and to a certain extent to supervised learning.

The goal of the paper is to perform a qualitative com-
parison of graph-based and logic-based MRDM, supported
by extensive experimentation. The paper identifies the spe-
cific qualitative dimensions on which two major paradigms
of multi-relational data mining differ. CProgol is selected as
a representative of logic-based approaches and Subdue is se-
lected as a representative of graph-based approaches. Exper-
iments are performed on the Mutagenesis dataset which is a
benchmark dataset for MRDM. In most of the experiments,
transformations are applied to the Mutagenesis dataset or
distinct types of background knowledge are provided to Sub-
due and CProgol. The rationale behind doing so is to per-
form lesion studies and gain insight on the specific abilities
of the approaches. Additional experiments are performed
on artificially generated Bongard problems to reinforce the
findings from the experiments on the Mutagenesis dataset.
We analyze the experimental data to generate insights about
the fundamental differences between the approaches under-
lying their strengths and weaknesses.

The rest of the paper is organized as follows. In Section 2,
we identify the factors on the basis of which the graph-based
and logic-based approaches should be compared, namely,
the ability to learn structurally large concepts, the ability
to learn semantically complicated concepts and the ability
to effectively utilize background knowledge. Section 3 de-
scribes the experimental setup, the MRDM systems Subdue
and CProgol, the Mutagenesis Dataset and the Bongard
problems. Sections 4, 5 and 6 describe the experiments,
present the results, and analyze the approaches based on
the three comparison factors. Conclusions and future work
are presented in Section 7.

2. FACTORS FOR COMPARISON

By performing a comparison of the graph-based and logic-
based approaches to MRDM, we intended to analyze the
ability of the approaches to efficiently discover complex
multi-relational concepts and to effectively utilize back-

ground knowledge. For doing so it is essential to establish
some notions on the complexity of a multi-relational concept
and to identify the types of background knowledge generally
available in the task of MRDM.

The complexity of a multi-relational concept is a direct
consequence of the number of relations in the concept. A
multi-relational concept is more complicated to learn than
some other multi-relational concept if learning that concept
involves learning more relations than the other concept. For
example learning the concept of arene (six member ring as
in benzene) which comprises learning six relations, involves
the exploration of a larger hypothesis space than learning
the concept of hydroxyl (oxygen connected to hydrogen as in
methanol), which comprises learning one relation. The con-
cept of arene is thus more complicated than that of hydroxyl.
Although the number of relations in the multi-relational con-
cept is a key factor in the complexity of the multi-relational
concept, there are also other factors such as the number
of relations in the examples from which the concept is to
be learned. For example, learning the concept of hydroxyl
from a set of large molecules (e.g., phenols, etc.) involves
the exploration of a larger hypothesis space than learning
the same hydroxyl concept from a set of small molecules
(e.g., methanol, etc.). The concept of hydroxyl group is
thus more complicated to learn from phenols than it is from
a set of alcohols. We identify this complexity as structural
complexity.

In order to learn a particular concept, it is essential that
the representation used by a multi-relational data mining
system is able to express that particular concept. For a rep-
resentation to express a particular concept, it is beneficial
to have both the syntax which expresses the concept and
the semantics which associates meaning to the syntax. The
concepts which cannot be represented by the representation
used by the MRDM system can be explicitly instantiated
in the examples . A relational concept can be said to have
a higher complexity than some other relational concept if
representing that concept requires a more expressive rep-
resentation. For example to learn numerical ranges, it is
essential to have the syntax and the semantics for repre-
senting notions like ’'lesser than’, ’greater than’ and ’equal
to’. We identify this complexity as semantic complexity.

A relational learner can be provided background knowl-
edge which condenses the hypothesis space. For example if
the concept to be learned is ’compounds with three arene
rings’ (six member ring as in benzene) and the concept of
an arene ring is provided as a part of the background knowl-
edge, then the arene rings in examples could be condensed
to a single entity. This would cause a massive reduction in
the hypothesis space required to be explored to learn the
concept and the relational learner would perform more effi-
ciently than without the background knowledge. We iden-
tify such background knowledge as background knowledge
intended to condense the hypothesis space.

A relational learner can be provided background knowl-
edge which augments the hypothesis space. For example
consider that the relational learner is provided with back-
ground knowledge which allows it to learn concepts like
’lesser than’’greater than’ and ’equal to’. In this case, the
relational learner would explore a hypothesis space larger
than what it would explore without the background knowl-
edge. Thus introducing background knowledge has aug-
mented the hypothesis space and has facilitated the learning

of concepts which would not be learned without the back-
ground knowledge. We identify such background knowledge
as background knowledge intended to augment the hypoth-
esis space.

Using these notions, we now identify the factors on the
basis of which the graph-based approach and the logic-based
approach can be compared. They are,

1. Ability to learn structurally large relational concepts.

2. Ability to learn semantically complicated relational
concepts or the ability to effectively use background
knowledge that augments the hypothesis space to learn
semantically complicated relational concepts.

3. Ability to effectively use background knowledge that
condenses the hypothesis space.

3. EXPERIMENTAL SETUP

In this section we briefly discuss CProgol, Subdue, the
Mutagenesis domain and the Bongard problems which are
used for the experimental comparison.

3.1 CProgol

CProgol[9] is an ILP system, characterized by the use of
mode-directed inverse entailment and a hybrid search mech-
anism. Inverse entailment is a procedure which generates a
single, most specific clause that, together with the back-
ground knowledge, entails the observed data. The inverse
entailment in CProgol is mode-directed that is, it uses mode
definitions. A mode declaration is a constraint which im-
poses restrictions on the atoms and their arguments appear-
ing in a hypothesis clause by,

1. Determining which atoms can occur in the head and
the body of hypotheses.

2. Determining which arguments can be input variables,
output variables or constants.

3. Determining the number of alternative solutions for
instantiating the atom.

The user-defined mode declarations aid the generation of the
most specific clause. CProgol first computes the most spe-
cific clause which covers the seed example and belongs to the
hypothesis language. The most specific clause can be used
to bound the search from below. The search is now bounded
between the empty clause and the most specific clause. The
search proceeds within the bounded #-subsumption lattice in
a general-to-specific manner. The search is a hybrid search,
because it is a general-to-specific search bounded from be-
low with respect to the most specific clause. The search
strategy is an A* algorithm which is guided by a weighted
compression and accuracy measure. The A* search returns
a clause which covers the most positive examples and max-
imally compresses the data. Any arbitrary Prolog program
can serve as background knowledge for CProgol.

3.2 Subdue

Subdue[2] is a graph-based MRDM system capable of un-
supervised and supervised learning. When operating as a
supervised learner, Subdue finds substructures distinguish-
ing the positive and negative examples. Subdue performs
a beam search which begins from substructures consisting

of all vertices with unique labels. The substructures are ex-
tended by one vertex and one edge or one edge in all possible
ways, as guided by the input graph, to generate candidate
substructures. Subdue maintains the instances of substruc-
tures (in order to avoid subgraph isomorphism) and uses
graph isomorphism to determine the instances of the candi-
date substructure in the input graph. Candidate substruc-
tures are evaluated according to classification accuracy or
the minimum discription length principle [14]. The length
of the search beam determines the number of candiate sub-
structures retained for further expansion. This procedure
repeats until all substructures are considered or the user im-
posed computational constraints are exceeded. At the end
of this procedure the positive examples covered by the best
substructure are removed. The process of finding substruc-
tures and removing positive examples continues until all the
positive examples are covered.

3.3 Mutagenesis Domain

The Mutagenesis dataset[15] has been collected to iden-
tify mutagenic activity in a compound based on its molec-
ular structure and is considered to be a benchmark dataset
for MRDM. The Mutagenesis dataset consists of the molec-
ular structure of 230 compounds, of which 138 are labeled
as mutagenic and 92 as non-mutagenic. The mutagenicity
of the compounds has been determined by the Ames Test.
The task is to distinguish mutagenic compounds from non-
mutagenic ones based on their molecular structure. The Mu-
tagenesis dataset basically consists of atoms, bonds, atom
types, bond types and partial charges on atoms. The dataset
also consists of the hydrophobicity of the compound (logP),
the energy level of the compound’s lowest unoccupied molec-
ular orbital (LUMO), a boolean attribute identifying com-
pounds with 3 or more benzyl rings (I1), and a boolean
attribute identifying compounds which are acenthryles (Ia).
Ia, I1, logP and LUMO are relevant properties in determin-
ing mutagencity.

3.4 Bongard Problems

Bongard problems|[1] were introduced as an artificial do-
main in the field of pattern recognition. A simplified form
of Bongard problems has been used as an artificial domain
in the field of ILP[13]. We use a similar form of Bongard
problems for our artificial domain experiments. We use a
Bongard problem generator to generate datasets as shown in
Figure 1. Each dataset consists of a set of positive and nega-
tive examples. Each example consists of a number of simple
geometrical objects placed inside one another. The task is
to determine the particular set of objects, their shapes and
their placement which can correctly distinguish the positive
examples from the negative ones.

4. STRUCTURALLY LARGE CONCEPTS

In this section we present the experiments, results and the
analysis on the comparison of the graph-based and logic-
based approaches while learning structurally large concepts.

4.1 Experiments on the Mutagenesis Dataset

In order to compare the performance of the approaches
while learning large structural concepts we ran Subdue and
CProgol on the Mutagenesis dataset. Since we intended to
compare the ability of the approaches to learn large struc-
tural concepts, both the relational learners were provided

Positive Examples Concept

©) ©)
S)
oo | |

Instances of the Concept in
Positive Examples

@ © ®
Ells

Negative Examples
@ O

HDD

Figure 1: A Bongard Problem.

Graph Representation

Logic Representation

atom(example_id atom_id element).
bond bond(example_id.atom_id,atom_id).

Figure 2: Representation of the Mutagenesis dataset
while comparing the ability to learn structurally
large concepts.

only with the basic information of the atoms, the elements
and the bonds without any other information or background
knowledge. This is shown in Figure 2. The relational learn-
ers are not provided with any additional information or any
form of background knowledge, because we intended to com-
pare the ability to learn large structural concepts. The intro-
duction of any additional information or background knowl-
edge would prevent this from happening. If systems were
provided with the partial charge on the atoms and back-
ground knowledge to learn ranges, the systems would learn
ranges on partial charges which would contribute to the ac-
curacy. This would make it difficult to analyze how the ap-
proaches compare while learning structurally large concepts.
Hence the partial charge information and the background
knowledge to learn ranges was not given to either system.
The atom type and bond type information was also not pro-
vided to either system. The reasoning behind doing so is
that we view the atom type and bond type information as a
propositional representation of relational data. Such infor-
mation allows the relational learners to learn propositional
representations of relational concepts instead of the true re-
lational concept. Consider for example the rule found by
CProgol on the Mutagenesis dataset[15],atom(A,B,c,195,C).
This rule denotes that compounds with a carbon atom of
type 195 are mutagenic. The atom type 195 occurs as the
atom shared by 3 fused rings 6 member rings. Therefore all

Table 1: Results on Mutagenesis Dataset while
Comparing the Ability to learn Structurally Large
Concepts

CProgol | Subdue
Training Set Accuracy 60.00% | 86.00%
Training Set Runtime 2010s 1876s
10-fold CV Accuracy 61.74% | 81.58%

10-fold CV Runtime (average) 1940s 2100s

CProgol - Subdue, AError+o | 20.84%+£12.78%

CProgol - Subdue, Confidence 99.94%

element

bond bond
bond
element atom
element bond

Figure 3: Rule Discovered by Subdue on the Mu-
tagenesis Dataset while learning structurally large
concepts.

compounds with 3 fused 6 member rings are labeled active.
It is interesting to note that a rule involving 15 relations (3
fused 6 member rings) has been learned by learning a single
relation. Learning such a rule has allowed CProgol to learn
a propositional representation of a relational concept rather
that the true relational concept. Providing atom type and
bond type information would allow both systems to learn
propositional representations of structurally large relational
concepts rather than the true relational concepts. We do
not consider the learning of such concepts equivalent to the
learning of structurally large relational concepts. We there-
fore do not provide either system with the atom type and
bond type information. The results of the experiment are
shown in Table 1. For the training set, the accuracy for one
run on the entire dataset and the learning time are shown.
For 10-fold cross validation (CV), average learning time over
10 folds is shown.

The results show that Subdue performs significantly bet-
ter than CProgol. Subdue learns 17 graphs representing 17
rules. One of the rules discovered by Subdue is shown in
Figure 3. This rule has an accuracy of 76.72% and cover-
age of 81.15%. The hypotheses learned by CProgol mostly
comprised of a single atom or bond predicate. The accuracy
achieved by CProgol is comparable to that of random guess-
ing. These results give a strong indication that a graph-
based approach can perform better than a logic-based ap-
proach when learning structurally large concepts.

4.2 Artificial Domain Experiments

We performed additional experiments using artificially
generated Bongard problems to reinforce the insights from
the experiments on the Mutagenesis dataset. Figure 4
shows the representations used for Subdue and CProgol.
We systematically analyzed the performance of Subdue and
CProgol on artificially generated Bongard problems with in-
creased number of objects in the concept and increased num-
ber of objects in the examples. In the first experiment, the
number of objects in the Bongard concept was varied from

Bongard Example

o

Graph Representation

Logic Representation

object(examplel object] oval).
object(example] object2,oval).
object(examplel object3 square).
in_boundary(examplel object_1).
inside(examplel object2,object]).
in_boundary(examplel object_1).

Figure 4: Representation for Bongard Problems.

5 to 35. The number of additional objects in each exam-
ple (objects which are not a part of the concept) were kept
constant at 5. For every concept size from 5 to 35, 10 differ-
ent concepts were generated. For each of the 10 concepts a
training set and a test set of 100 positive and 100 negative
examples was generated. CProgol and Subdue were run on
the training sets and were tested on the test sets. Figure
5 (a) shows the average accuracy achieved by CProgol and
Subdue on 10 datasets for every concept size ranging from
5 to 35. It is observed that Subdue clearly outperforms
CProgol. In order to further analyze the performance of the
systems we reran the same experiment but in this case the
systems were iteratively given increased resources (this was
achieved by varying the 'nodes’ parameter in CProgol and
the ’limit’ parameter in Subdue) so that we could determine
the number of hypotheses each system explored before it
learned the concept (a cutoff accuracy of 80% was decided).
Figure 5 (b) shows the number of hypotheses explored by
each system so as to achieve an accuracy of 80% (this exper-
iment was only performed for concept size varying from 5
to 18 as a significantly large amount of time was required).
A snapshot of the experiment (Accuracy vs. Number of Ex-
plored Hypotheses) for concept size 10 is shown in Figure 5
(c). The results show that CProgol explores a larger number
of hypotheses than Subdue.

A similar experiment for increased example size was per-
formed where the concept size was kept constant at 5 and
the example size was varied from 10 to 35. Figure 5 (d)
shows the average accuracy achieved by CProgol and Sub-
due on 10 datasets for every example size ranging from 10
to 35. Figure 5 (e) shows the hypotheses required to be ex-
plored to learn the concept (a cutoff accuracy of 80% was
decided) determined by iteratively increasing the resources
for each system. A snapshot of the experiment (Accuracy
vs. Number of Explored Hypotheses) for example size 15 is
shown in Figure 5 (f). Again, the results show that CProgol
explores a larger number of hypotheses than Subdue.

4.3 Analysis

Here we attempt to explain the empirical results based
on the algorithmic differences between the two approaches.
An analysis of CProgol indicates that it first generates a
most-specific clause from a randomly selected example us-
ing the mode definitions. Mode definitions together with the
background knowledge form a user-defined model for gener-

a) 100 .. . b) 5100 ¢)to0 — . . -
\ 4600
\ CProgol /
\ 41 90
0 3 1 - 0o // CProgol ———————
\ 2 3600 / CProgol ————
\ S
\ =4
.. 80 \ £ 3100 580 .
g \ g g r~/
£ & 2600 3 /
o \ [} Q o
< 70 \ £ 2100 S0 o
» \ 1 s p—ooood
I 1600
w* / peeed
60 \ 1100 60 /
\ |
\ 600 atammaseansd
50 MR 100 50 [
5 10 15 20 25 30 35 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 100 1100 2100 3100 4100 5100
Objects in Bongard Concept # Objects in Bongard Concept # Hypotheses Explored
d) 100 , . — 5100
) e 7 f) 100 7]
4600 /
90 | \ 4100 I'a 20
/ - . CProgol ————
5 3600 /’ CProgol g
80 | S 3100 / 80
g & z
s » 2600 8
Q [0 =1
S 3 8 /
< 70 L £ 2100 2 70 /
& g ® /
CProgol ———— = 1600 ﬁ
60 | * 1100 60
600
50 100 50
10 15 20 25 30 35 10 15 20 25 30 35 40 100 600 1100 1600 2100 2600 3100

Objects in Bongard Example

Objects in Bongard Example

Hypotheses Explored

Figure 5: Results on artificial Bongard problems while comparing the ability to learn structurally large

concepts

ation of candidate hypotheses. After generation of the most-
specific clause, CProgol performs a general-to-specific search
in the bounded #-subsumption lattice guided by the mode
definitions. The most general hypothesis is the empty clause
and the most specific hypothesis is the clause generated in
the previous step. The process of hypothesis generation is
affected more by the mode definitions and the background
knowledge than the examples, firstly because a single exam-
ple is used to construct the most specific clause, and sec-
ondly because the mode definitions have a major effect on
the process of hypothesis generation. Thus, CProgol makes
more use of the mode definitions and background knowl-
edge and less use of the examples. This observation about
CProgol can be partially generalized to other logic-based
approaches like top-down search of refinement graphs[12],
inverse resolution[10] and relative least general generaliza-
tion[11]. An analysis of Subdue indicates that hypotheses
are generated only on the basis of the examples. The candi-
date hypotheses are generated by extending the sub-graph
by an edge and a vertex or just an edge in all possible ways as
in the examples. As Subdue generates the hypotheses only
on the basis of the examples, it is more example driven.
This observation about Subdue can be partially general-
ized to other graph-based systems like FSG[6], AGM[5] and
gSpan|[16], because there is more use of the examples and less
use of the model. Subdue tends to explore the hypothesis
space more efficiently because they use only the examples to
generate candidate hypotheses, and thus can search a larger
portion of the smaller hypothesis space with a given amount
of resources, which is essential in learning structurally large
relational concepts.

5. SEMANTICALLY COMPLICATED CON-
CEPTS

In this section we present the experiments, results and
the analysis on the comparison of graph-based and logic-
based approaches while learning semantically complicated
concepts.

5.1 Experiments on the Mutagenesis Dataset

In order to compare the performance of the approaches
while learning semantically complicated concepts, we ran
Subdue and CProgol on the Mutagenesis dataset. Each
system was provided with background knowledge so that
numerical ranges could be learned. For CProgol this was
achieved by introducing Prolog based background knowl-
edge. For Subdue this was achieved by explicitly instanti-
ating the background knowledge, i.e., additional structure
was added to the training examples. This is shown in Fig-
ure 6. The results of this experiment are shown in Table
2. The results indicate that CProgol uses the background
knowledge and shows an improved performance while Sub-
due has achieved a lower accuracy than what it achieved
without the background knowledge. These results give a
strong indication that a logic-based approach performs bet-
ter than a graph-based approach when learning semantically
complicated concepts.

Additional experiments (not reported in this paper) were
performed with Subdue using various other forms of explicit
instantiation to learn ranges. In all the experiments, Subdue
did not learn ranges effectively, suggesting future investiga-
tion of a non-instantiation-based approach to introducing

Graph Representation Logic Representation

Jesser_than
gteg(XY):- Iteq(X,Y):-
not(var(X), mot(var

X))
equal_to not(var(Y)), not(var(Y)),
charge foai(X),floa(y), ~ float(X), float),
0H=Y X=Y,!.
ateq(XX)- Iteq(XX):-

not(var(X), n0(var(X)),
float(X). float(X).

*Forall unique values in a compound.

Figure 6: Representation of the Mutagenesis dataset
while comparing the ability to learn semantically
complicated concepts.

Table 2: Results on the Mutagenesis Dataset while
Comparing the Ability to learn Semantically Com-
plicated Concepts

CProgol | Subdue
Training Set Accuracy 67.00% | 64.00%
Training Set Runtime 1180s 2876s
10-fold CV Accuracy 66.53% | 63.91%

10-fold CV Runtime (average) 1330s 2900s

CProgol - Subdue, AError+o 2.16%+3.5%

CProgol - Subdue, Confidence 95.77%

background knowledge.
5.2 Analysis

Subdue explores only those hypotheses which are explic-
itly present in the examples. For hypotheses to be explicitly
present in the examples, it is essential that the semanti-
cally complicated concepts that have to be learned be ex-
plicitly instantiated in the examples. An example of this
is the explicit instantiation in the Mutagenesis experiment
for Subdue to learn ranges. The drawbacks of the data-
driven approach are that explicit instantiation is cumber-
some in most cases and also that explicit instantiation is
not a generalized methodology to learn complicated seman-
tic concepts. For example, suppose a domain expert were to
suggest that the ratio of the number of carbon atoms to the
number of hydrogen atoms in a molecule has an effect on the
mutagencity. CProgol with some added background knowl-
edge could use this information to classify the molecules.
Subdue on the other hand would require making changes
to the representation such that the pattern would be found
in terms of a graph. CProgol allows the exploration of hy-
potheses through implicitly defined background knowledge
rather than explicit instantiation in the examples. This is es-
sential in learning semantically complicated multi-relational
concepts.

6. BACKGROUND KNOWLEDGE

In this section we present the experiments, results and
analysis on the comparison of graph-based and logic-based
approaches while utilizing hypothesis space condensing
background knowledge.

Graph Representation

Logic Representation

indl (example_id boolean).
inda(example_id boolean)

Connected to all vertices labeled atom’ in the graph representation of compound.

Figure 7: Representation of the Mutagenesis dataset
while comparing the ability to utilize background
knowledge in the form of indicator variables.

Table 3: Results on the Mutagenesis Dataset
while Comparing the Ability to Utilize Background
Knowledge in the Form of Indicator Variables
CProgol | subdue
Training Set Accuracy 82.00% | 80.00%
Training Set Runtime 960s 848s
10-fold CV Accuracy 78.91% | 77.39%
10-fold CV Runtime (average) 810s 878s
CProgol - Subdue, AError+o 1.52%+11.54%
CProgol - Subdue, Confidence 31.38%

6.1 Experiments on the Mutagenesis Dataset

In order to compare the ability of graph-based and logic-
based approaches to utilize background knowledge, each sys-
tem was provided with the background knowledge indicat-
ing the presence of benzyl rings (I1) and identifying com-
pounds which are acenthryles (Ia). This is shown in Figure
7. Table 3 shows the results of this experiment. The results
indicate that CProgol uses the background knowledge and
show an improved performance while Subdue has achieved
a lower accuracy than what it achieved without the back-
ground knowledge. While the results are not statistically sig-
nificant, they give an indication that logic-based approaches
tend to utilize background knowledge more effectively than
graph-based approaches. The background knowledge pro-
vided to the systems was in the form of boolean indicator
variables. In order to compare the ability of graph-based and
logic-based approaches to utilize more complicated forms of
background knowledge, each system was provided with the
background knowledge indicating certain generic chemical
concepts like benzene rings, nitro groups, etc. This is shown
in Figure 8. Table 4 shows the results of this experiment.
The results indicate that neither system uses the background
knowledge or shows an improved performance.

6.2 Artificial Domain Experiments

We performed additional experiments using artificially
generated Bongard problems to reinforce the insights from
the experiments on the Mutagenesis dataset. Figure 9
shows the representations used for Subdue and CProgol.
We systematically analyzed the performance of Subdue and
CProgol on artificially generated Bongard problems with in-

a)

100

CProgol ——— _

5100
4600
4100

\ CProgol ———

3600 \
3100 \
2600 \

% Accuracy

2100 \
1600

Hypotheses Required

60 / 1100

/
/ 600

A —— . 100 \

01 2 8 456 78 810 0123 45678 91
Objects Background Knowledge # Objects in Background Knowledge

% Accuracy

) 100

0

©
3

=~
=]

60

50

1010
910
810

CProgol

710
610
510
410
310
210
110

—
7
CProgol ———— /
/
,«//
—

/

Hypotheses Required

4 5

0 1 2 3
Objects in Background Knowledge

1 2 3 4
Objects Background Knowledge

Figure 10: Results on artificial Bongard problems while comparing the ability to utilize background knowl-

edge.

Graph Representation Logic Representation

benzetc benzene(example_id, atom_id,atom_id....])

Connected to all the atoms which form the chemical structure.

Figure 8: Representation of the Mutagenesis dataset
while comparing the ability to utilize background
knowledge indicating generic chemical concepts.

Table 4: Results on the Mutagenesis Dataset
while Comparing the Ability to Utilize Background
Knowledge Indicating Generic Chemical Concepts

CProgol | Subdue
Training Set Accuracy 62.00% | 64.00%
Training Set Runtime 2130s 1910s
10-fold CV Accuracy 61.74% | 63.84%
10-fold CV Runtime (average) | 2212s 2010s
CProgol - Subdue, AError+o 1.74%+25.12%
CProgol - Subdue, Confidence 16.86%

Logic Representation

Graph Representation

background (example_id,[object_id,object_id..)

Connected to all ‘objects' known to be present in the Bongard Concept.

Figure 9: Representation for introducing back-
ground knowledge in Bongard Problems.

creased amount of background knowledge while learning a
large concept (more objects in the concept) and with in-
creased amounts of background knowledge while learning a
concept from a large example (more objects in each exam-
ple). In the first experiment, for a concept of size 10 and
additional objects in each example equal to 5, 10 concepts
were generated. For each of these concepts a training set
and test set of 100 positive and 100 negative examples were
generated. Figure 10 (a) shows the accuracies achieved by
Subdue and CProgol (Note that both the systems were given
less resources than the experiments in Section 4.3 so that the
effect of background knowledge could be analyzed). Figure
10 (b) shows the hypotheses required by each system to learn
the concept (a cutoff accuracy of 80% was decided). CPro-
gol shows a larger improvement in performance than Subdue
after the introduction of background knowledge. A similar
experiment for a concept of size 5 and example size of 15
was performed. Figure 10 (c) shows the accuracies achieved
by Subdue and CProgol (Note that both the systems were
given less resources than the experiments in Section 4.3 so
that the effect of background knowledge could be analyzed).
Figure 10 (d) shows the hypotheses required by each system
to learn the concept (a cutoff accuracy of 80% was decided).
Again, CProgol shows a larger improvement in performance
than Subdue after the introduction of background knowl-
edge.

6.3 Analysis

As mentioned previously, Subdue explores only those hy-
potheses which are explicitly present in the examples. Thus,
in order to use background knowledge, it is essential for the
background knowledge to be explicitly present in the ex-
amples. This is the reason why background knowledge is
introduced in the form of a vertex which is connected to
all the entities which comprise the background knowledge,
as in the Bongard problems. In the case of CProgol, simi-
lar background knowledge is introduced in the form of the
predicate, background(example_id,[object_id, object_id..]).
Subdue generates candidate hypotheses by extending the
sub-graph by an edge and a vertex or just an edge in all
possible ways as in the examples. The resulting increase
in hypothesis space to be explored by Subdue after the in-
troduction of background knowledge is larger than that of
CProgol which can generate candidate hypotheses by adding
a background knowledge predicate in a single refinement.
Subdue does provide an alternate way of introducing back-
ground knowledge by preprocessing the examples and com-
pressing each of the user defined substructures which form
the background knowledge into a single vertex. This tech-
nique is more efficient, but leads to information loss and Sub-
due will not be able to learn a concept that contains only a
partial portion of the background knowledge substructure.
Thus, CProgol utilizes background knowledge more effec-
tively than Subdue.

7. CONCLUSIONS AND FUTURE WORK

We performed an experimental comparison of the graph-
based multi-relational data mining system, Subdue, and the
inductive logic programming system, CProgol. From this
comparison we conclude that Subdue tends to explore the
hypothesis space more efficiently which is essential in learn-
ing structurally large relational concepts. CProgol makes ef-
ficient use of background knowledge and is better at learning
semantically complicated concepts. Subdue requires instan-
tiated background knowledge and can only learn concepts
which are explicitly instantiated into the examples. Sub-
due needs to achieve the ability to use background knowl-
edge and learn semantically complicated concepts. CProgol
needs mechanisms which explore the search space more effi-
ciently. Developing methodologies for using existing graph-
based and logic-based systems in combination is an imme-
diate, but less efficient, way to learn structurally large and
semantically complicated concepts. For example, the struc-
turally complicated hypotheses learned by a graph-based
system could then be used as background knowledge by a
logic-based system.

The conclusions drawn for this case study provide ini-
tial insights about the differences between graph-based and
logic-based MRDM. As the study was limited to one repre-
sentative system of each approach, and a single real world
domain, these conclusions cannot be generalised to graph-
based and logic-based approaches to MRDM. A similar
study involving more systems and more domains would be
required to generate insights about the fundamental differ-
ences between graph-based and logic-based MRDM. We plan
to pursue this in future.

8. ACKNOWLEDGEMENTS

This research is sponsored by the Air Force Research

Laboratory (AFRL) under contract F30602-01-2-0570. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of AFRL or the United States Government.

9. REFERENCES

[1] M. Bongard. Pattern Recognition. Spartan Books,
1970.

[2] D. J. Cook and L. B. Holder. Substructure discovery
using minimum description length and background
knowledge. J. Artif. Intell. Res. (JAIR), 1:231-255,
1994.

[3] L. Dehaspe and H. Toivonen. Discovery of frequent
datalog patterns. Data Min. Knowl. Discov.,
3(1):7-36, 1999.

[4] S. Dzeroski. Multi-relational data mining: an
introduction. SIGKDD Ezplorations, 5(1):1-16, 2003.

[5] A. Inokuchi, T. Washio, and H. Motoda. An
apriori-based algorithm for mining frequent
substructures from graph data. In PKDD, pages
13-23, 2000.

[6] M. Kuramochi and G. Karypis. An efficient algorithm
for discovering frequent subgraphs. IEEE Trans.
Knowl. Data Eng., 16(9):1038-1051, 2004.

[7] T. Matsuda, T. Horiuchi, H. Motoda, and T. Washio.
Extension of graph-based induction for general graph
structured data. In PAKDD, pages 420-431, 2000.

[8] S. Muggleton. Inductive logic programming. New
Generation Comput., 8(4):295—, 1991.

[9] S. Muggleton. Inverse entailment and progol. New
Generation Comput., 13(3&4):245-286, 1995.

[10] S. Muggleton and W. L. Buntine. Machine invention
of first order predicates by inverting resolution. In
ML, pages 339-352, 1988.

[11] S. Muggleton and C. Feng. Efficient induction of logic
programs. In ALT, pages 368-381, 1990.

[12] J. R. Quinlan. Learning logical definitions from
relations. Machine Learning, 5:239-266, 1990.

[13] L. D. Raedt and W. V. Laer. Inductive constraint
logic. In ALT, pages 80-94, 1995.

[14] J. Rissanen. Sochastic Complezity in Statistical
Inquiry. Singapore: World Scientific Publishing, 1989.

[15] A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and
R. D. King. Theories for mutagenicity: A study in
first-order and feature-based induction. Artif. Intell.,
85(1-2):277-299, 1996.

[16] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In ICDM, pages 721-724, 2002.

