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Abstract 
In this paper we study the inference of node and 
edge replacement graph grammars. We search 
for frequent subgraphs and then check for 
overlap among the instances of the subgraphs in 
the input graph. If subgraphs overlap by one 
node, we propose a node replacement graph 
grammar production. If subgraphs overlap by 
two nodes or two nodes and an edge, we propose 
an edge replacement graph grammar production. 
We also can infer a hierarchy of productions by 
compressing portions of a graph described by a 
production and then inferring new productions 
on the compressed graph. We validate the 
approach in experiments where we generate 
graphs from known grammars and measure how 
well the approach infers the original grammar 
from the generated graph. We show the graph 
grammars found in biological molecules, 
biological networks and analyze learning curves 
of the algorithm. 

 

1.  Introduction 

Noam Chomsky (1956) pointed out that one of the main 
concerns of a linguist is to discover simple grammars for 
natural languages and study those grammars with the 
hope of finding a general theory of linguistic structure. 
While string grammars represent language, we are 
looking for graph grammars that represent graph 
properties and can generalize these properties from finite 
graph examples into generators that can generate an 
infinite number of graphs. String grammars can be 
inferred from a finite number of sentences and generalize 
to an infinite number of sentences. Inferring graph 
grammars will generalize the knowledge from the 
examples into a concise form and generalize to an infinite 
number of entities from the domain.  

We study the inference of node and edge replacement 
graph grammars. We search for frequent subgraphs and 
then check for overlap among the instances of the 

subgraphs in the input graph. If subgraphs overlap by one 
node, we propose a node replacement graph grammar 
production. If subgraphs overlap by two nodes or two 
nodes and an edge, we propose an edge replacement 
graph grammar production. We also can infer a hierarchy 
of productions by compressing portions of a graph 
described by a production and then inferring new 
productions on the compressed graph. We validate the 
approach in experiments where we generate graphs from 
known grammars and measure how well the approach 
infers the original grammar from the generated graph. We 
show the graph grammars found in biological molecules 
and biological networks and analyze learning curves of 
the algorithm 

2.  Related work  

A vast amount of research has been done in inferring 
grammars. These analyses focus on string grammars 
where symbols appear in a sequence. We are concerned 
with graph grammars, which can represent much larger 
classes of problems than string grammars. Only a few 
studies can be found in graph grammar inference.  

Jeltsch and Kreowski (1990) did a theoretical study of 
inferring hyperedge replacement graph grammars from 
simple undirected, unlabeled graphs. Their paper leads 
through an example where from four complete bipartite 
graphs (K3,1;,K3,2; K3,3; K3,4), the authors describe the 
inference of a grammar that can generate a more general 
class of bipartite graphs (K3,n), where n≥1. The authors 
define four operations that lead to a final hyperedge 
replacement grammar. Jeltsch and Kreowski start the 
process from a grammar which has all the sample graphs 
in its productions. Then they transform the initial 
productions into productions that are more general but can 
still produce every graph from the sample graphs. Their 
approach guarantees that the final grammar will generate 
graphs that contain all sample graphs. 

Oates, Doshi, and Huang (2003) discuss the problem of 
inferring probabilities of every grammar rule for 
stochastic hyperedge replacement context free graph 
grammars. They call their program Parameter Estimation 
for Graph Grammars (PEGG).  They assume that the 
grammar is given. Given a structure of a grammar S and a 
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finite set of graphs E generated by grammar S, they ask 
what are the probabilities θ associated with every rule of 
the grammar. Their strategy is to look for a set of 
parameters θ that maximizes the probability p(E| S, θ).  

In terms of similarity to string grammar inference we 
consider the Sequitur system developed by Nevill-
Manning and Witten (1997). Sequitur infers a hierarchical 
structure by replacing substrings based on grammar rules. 
The new, compressed string is searched for substrings 
which can be described by the grammar rules, and they 
are then compressed with the grammar and the process 
continues iteratively. Similarly, in our approach we 
replace the part of a graph described by the inferred graph 
grammar with a single node and we look for grammar 
rules on the compressed graph and repeat this process 
iteratively until the graph is fully compressed. 

Jonyer et al.’s approach to node-replacement graph 
grammar inference (Jonyer, Holder, and Cook, 2002, 
2004) starts by finding frequently occurring subgraphs in 
the input graphs. They check if isomorphic instances of 
the subgraphs that minimize the measure are connected by 
one edge. If they are, a production S→ PS is proposed, 
where P is the frequent subgraph. P and S are connected 
by one edge. Jonyer’s method of testing if subgraphs are 
adjacent by one edge limits his grammars to descriptions 
of “chains” of isomorphic subgraphs connected by one 
edge. Since an edge of a frequent subgraph connecting it 
to the other isomorphic subgraph can be included to the 
subgraph structure, testing subgraphs for overlap allows 
us to propose a class of grammars that have more 
expressive power than the graph structures covered by 
Jonyer’s grammars. For example, testing for overlap 
allows us to propose grammars which can describe tree 
structures, while Jonyer’s approach does not allow for 
tree grammars. 

3.  Definitions  

We give the definition of a graph and a graph grammar 
which is relevant to our approach and the implemented 
system. The defined graph has labels on vertices and 
edges. Every edge of the graph can be directed or 
undirected. The definition of a graph grammar describes 
the class of grammars that can be inferred by our 
approach. We emphasize the role of recursive productions 
in the name of the grammar, because the type of inferred 
productions are such that the non-terminal label on the 
left side of the production appears one or more times in 
the node labels of a graph on the right side. This is the 
main characteristic of our grammar productions. Our 
approach can also infer non-recursive productions. The 
embedding mechanism of the grammar consists of 
connection instructions. Every connection instruction is a 
pair of vertices that indicate where the production graph 
can connect to itself in a recursive fashion. 

A labeled graph G is a 6-tuple, ( )LEVG ,,,,, ηνμ= , 
where 
V - is the set of nodes, 

VVE ×⊆
LV →:

- is the set of edges,  
μ  - is a function assigning labels to the nodes, 

LEv →:  - is a function assigning labels to the edges, 
}1,0{: →Eη - is a function assigning direction property to 

edges (0 if undirected, 1 if directed).  
L - is a set of labels on nodes and edges.  
 
A node replacement recursive graph grammar is a tuple 

( )PGr ,,, ΓΔ∑= , where 
∑ - is an alphabet of node labels, 
Δ - is an alphabet of terminal node labels, ∑⊆Δ , 
Γ - is an alphabet of edge labels, which are all terminals,  
P - is a finite set of productions of the form , 
where

),,( CGd
Δ−∑∈d

V

, is a graph, C  is an embedding 
mechanism with a set of connection instructions, 

G

VC ×⊆ , where V  is the set of nodes of . A 
connection instruction i

G
Cvv j ∈),(

iv
G

 implies that derivation 
can take place by replacing  in one instance of G  with 

 in another instance of . All the edges incident to 
i are incident to . All the edges incident to remain 

unchanged. 

jv
v jv jv

 

An edge replacement recursive graph grammar is a 5-
tuple ( )PGr ,,,, ΩΓΔ∑= , where 
∑ - is an alphabet of node labels, 
Δ - is an alphabet of terminal node labels, ∑⊆Δ , 
Γ - is an alphabet of edge labels,  
Ω -is an alphabet of terminal edge labels, ∑⊆Ω

,,( Gd
, 

P - is a finite set of productions of the form , G is 
a graph, where 

)C
Ω−Γ∈d ,  is an embedding mechanism 

with a set of connection instructions, 
C

)V;( VVVC ××⊆ , 
where  is the set of nodes of . A connection 
instruction lkji

V G
Cvvvv ∈),;

v
,(  implies that derivation can 

take place by replacing i , k  in one instance of  with 
lj  respectively, in another instance of G . All the 

edges incident to iv are incident to j , and all the edges 
incident to kv  are incident to l . All the edges incident to 

j and k remain unchanged. If, in derivation process after 
applying connection instruction ( kji , nodes 

ji are adjacent by an edge, we call edge ji

v G

), lvv
,( vve

v

v

v ,

v

v ,

v

v

v
v

;v,
)=  a 

real edge, otherwise edge ji ),(v ve = is used only in the 
specification of the grammar and we call this edge a 
virtual edge. We introduce the definition of two data 
structures used in our algorithm.  

A substructure S of a graph G is a data structure which 
consists of: (1) graph definition of a substructure SG 
which is a graph isomorphic to a subgraph of G, (2)  list 
of instances (I1, I2, …, In) where every instance is a 
subgraph of G isomorphic to SG. 
A recursive substructure recursiveSub is a data structure 
which consists of: 

(1) graph definition of a substructure SG  which is a graph 
isomorphic to a subgraph of G 
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(2) list of connection instructions which are pairs of 
integer numbers describing how instances of the 
substructure can overlap to comprise one instance of 
the corresponding grammar production rule. 

(3) List of recursive instances (IR1, IR2, …, IRn) where 
every instance IRk is a subgraph of G. Every instance 
IRk  consist of one or more isomorphic copies of SG, 
overlapping by no more than one vertex in the 
algorithm for node graph grammar inference and no 
more than two vertices in edge grammar inference. 

. 
In our definition of a substructure we refer to subgraph 
isomorphism. However, in our algorithm we are not 
solving the subgraph isomorphism problem. We are using 
a polynomial time beam search to discover substructures 
and graph isomorphism to collect instances of the 
substructures.  

4.  The Graph Grammar Inference Algorithms 

An example in Figure 1 shows a graph composed of three 
overlapping substructures. The algorithm generates 
candidate substructures and evaluates them using any one 
of the learning biases, which are discussed later. The 
input to our algorithm is a labeled graph G which can be 
one connected graph or set of graphs. G can have directed 
or undirected edges. The algorithm begins by creating a 
list of substructures where every substructure is a single 
node and its instances are all nodes in the graph with the 
same node label. Initially, the best substructure is the 
node with the most instances. The substructures are 
ranked and placed on the expansion queue Q. It then 
extends all substructures in Q in all possible ways by a 
single edge and a node or only by single edge if both 
nodes are already in the graph definition of the 
substructure. We keep all extended substructures in 
newQ. We evaluate substructures in newQ according to 
the chosen evaluation heuristic.  

 
Figure 1: A graph with overlapping substructures and a graph 
grammar representation of it. 
 
The total number of substructures considered is 
determined by the input parameter Limit. The best 
substructure identified becomes the right side of the first 
grammar production, and the graph G is compressed 
using this best substructure. Compression replaces every 
instance of best substructure with a single non-terminal 
node. This node is labeled with a non-terminal label. The 

compressed graph is further processed until it cannot be 
compressed any more, or some user-defined stopping 
condition is reached (maximum number of productions, 
for instance). In consecutive iterations the best 
substructure can have one or more non-terminal labels. It 
allows us to create a hierarchy of grammar productions. 
The input parameter Beam specifies the width of the 
beam search, that is, the length of Q. The Algorithm 1 
shows the pseudocode.  

Algorithm 1 Graph grammar discovery.  

INFER_GRAMMAR (graph G, integer Beam, integer 
Limit) 

1. grammar={} 
2. repeat 
3.     queue Q ={v | v is a node in G having a unique 

label} 
4.     bestSub= first substructure in Q 
5.     repeat 
6.         newQ ={} 
7.         for each substructure S ∈  Q 
8.             newSubs = extend substructure S in all 

possible ways by a single edge and a node  
9.             recursiveSub = 

RECURSIFY_SUBSTRUCTURE(S) 
10.             newQ = newQ ∪ newSubs 

∪ recursiveSub  
11.             Limit=Limit-1 
12.             evaluate substructures in newQ , maintain 

length(newQ) < Beam eliminating                                                      
substructure with the lowest value if necessary 

13.         end for 
14.         if best substructure in newQ better than 

bestSub 
15.         then bestSub = best substructure in newQ 
16.         Q=newQ 
17.     until Q is empty or Limit ≤ 0 
18.     grammar = grammar ∪ bestSub  
19.     G = G compressed by bestSub 
20. until bestSub cannot compress the graph G 
21. return grammar 

 

Recursive productions are identified during the previously 
described search process by allowing instances to grow 
and overlap. Any two instances are allowed to overlap by 
only one vertex. The recursive substructure is evaluated 
along with non-recursive substructures and is competing 
with non-recursive substructures for placement on Q. 
Connection instructions are created by determining which 
nodes overlapped across instances. Figure 2 shows an 
example of a substructure that is the right side of a 
recursive rule, along with its connection instructions 
(Kukluk, Holder, and Cook, 2006).  

The edge replacement algorithm operates on a data 
structure called a substructure (similar to the algorithm for 
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node replacement grammar inference). A substructure 
consists of a graph definition of the repetitive subgraph 
and its instances. We illustrate it in Figure 3. We grow 
substructures similarly as in the algorithm for node 
replacement graph grammar inference, then we examine 
instances for overlap. If two nodes 21  in G both belong 
to two different instances (two overlapping instances), we 
propose a recursive grammar rule. We determine the type 
of non-terminal edge. If 21  are adjacent by an edge, it 
is a real edge, and we determine its label which we use to 
specify the terminating production. If 21 are not 
adjacent, then the non-terminal edge is virtual. In 

,vv

,vv

,vv
Figure 3 

we illustrate how we determine connection instructions.  

 
 

Figure 2: Substructure and its instances while determining 
connection instructions (continuation of the example from 
Figure 1). 
 

One advantage of our algorithm is its modular design in 
which the evaluation of candidate grammar rules is done 
separately from the generation of these candidates. The 
result is that any evaluation metric can be used to drive 
the search. Different evaluation metrics are part of the 
system and can be specified as arguments. We have had 
great success with the minimum description length 
(MDL) principle on a wide range of domains. MDL is an 
information theoretic approach (Rissanen, 1989). The 
description length of the substructure S given the input 
graph G is calculated as DL(S,G) =DL(S)+DL(G|S), 
where DL(S) is the description length of the subgraph, 
and DL(G|S) is the description length of the input graph 
compressed by the subgraph (Cook and Holder, 1994, 
2000). An alternative measure is the size heuristic which 
is computed as 

( )
( ) ( )SGsizeSsize

Gsize
|+

 

where G is the input graph, S is a substructure and G|S is 
the graph derived from G by compressing each instance 
of S into a single node. size(t) can be computed simply by 
summing the number of nodes and edges: size(t) = 
vertices(t) + edges(t). The third measure is called 
setcover, which is used for concept learning tasks using 
sets of disconnected graphs. This measure maximizes the 
number of positive examples in which the grammar 
production is found while minimizing the number of such 
negative examples. 

 
 
Figure 3. The input graph (a), substructure graph definition (b) 
and four overlapping instances of repetitive subgraph (c). 
 
Our algorithms make use of the substructure discovery 
algorithm described in Cook and Holder (2000). This 
algorithm uses a heuristic search whose complexity is 
polynomial in the size of the input graph. The overlap test 
is the main computationally expensive addition of our 
grammar discovery algorithm and it does not change its 
complexity. The number of nodes of an instance graph is 
not larger than V, where V is the number of nodes in the 
input graph. Checking two instances for overlap will not 
take more than time. The number of pairs of 
instances is no more than , so the entire overlap test 
will not take more than  time.  

)V( 2O

O

2V
)V 4(

5.  Experiments 

5.1  Methodology 

Having our algorithm implemented, we faced the 
challenge of evaluating its performance. There are an 
infinite number of grammars as well as graphs generated 
from these grammars. We seek to understand the 
relationship between graph grammar inference and 
grammar complexity, and so need a measure of grammar 
complexity. One such measure is the Minimum 
Description Length (MDL) of a graph, which is the 
minimum number of bits necessary to completely 
describe the graph.  

In our experiments we measure an error based on 
structural difference. Another approach to measuring the 
accuracy of the inferred grammar would be based on a 
graph grammar parser. We would consider accurate the 
inferred grammars that can parse the input graph. Graph 
grammar parser would require subgraph isomorphism test 
which is computationally expensive and much more 
difficult in implementation than the error measure we are 
using. For these reasons we did not pursue 
implementation of graph grammar parser.  
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We would like our error to be a value between 0 and 1; 
therefore, we normalize the error by having in the 
denominator the sum of the size of the graph used in the 
original grammar and the number of non-terminals. We 
do not allow an error to be larger than 1; therefore, we 
take the minimum of 1 and our measure as a final value. 
The restriction that the error is not larger than 1 prohibits 
unnecessary influence on the average error taken from 
several values by inferred graph structure significantly 
larger than the graph used in the original grammar.  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−+
=

NTg
NTCIgg

Error
#)size(

##),(matchCost
,1min

1

21 ,         

where  
)g,matchCost( 21g

2g

 is the minimal number of operations 
required to transform to a graph isomorphic to , or 

to a graph isomorphic to . The operations are: 
insertion of an edge or node, deletion of a node or an 
edge, or substitution of a node or edge label.           

1g 2g

1g

CI#  is the number of inferred connection instructions  
NT#  is the number of non-terminals in the original 

grammar 
)size( 1g  is the sum of the number of nodes and edges in 

the graph used in the grammar production 
 

5.2  Error as a function of noise and complexity of a 
graph grammar 

We used twenty nine graphs from Figure 5 in grammar 
productions. We assigned different labels to nodes and 
edges of these graphs except three nodes used for non-
terminals. As noise we added nodes and edges to the 
generated graph structure. We compute the number of 
added nodes from the formula (noise/(1- 
noise))*number_of_nodes. Similary for edges. We 
generated graphs with noise from 0 to 0.9 in 0.1 
increments. For every value of noise and MDL we 
generated thirty graphs from the known grammar and 
inferred the grammar from the generated graph. We 
computed the inference error and averaged it over thirty 
examples. We generated 8700 graphs to plot each of the 
three graphs in Figure 4. The first plot shows results for 
grammars with one non-terminal. The second and the 
third plot show results for grammars with two and three 
non-terminals.  

We average the value of an error over ten values of noise 
which gives us the value we can associate with the graph 
structure. It allowed us to order graph structures used in 
the grammar productions based on average inference 
error. In Figure 5 we show all twenty nine connected 
simple graphs with three, four and five nodes used in 
productions ordered in non-decreasing MDL value of a 
graph structure. 
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Figure 4: Error as a function of noise and MDL where graph 
structure was not corrupted (one, two and three non-terminals 
respectively). 
 

 
Figure 5: Twenty nine simple connected graphs ordered 
according to non-decreasing MDL value. 

 

5.3  Error as a function of number of labels  

We would like to evaluate how error depends on the 
number of different labels used in a grammar. We 
restricted graph structures used in productions to graphs 
with five nodes. Every graph structure we labeled with 1, 
2, 3, 4, 5 or 6 different labels. For every value of MDL 
and number of labels we generated 30 different graphs 
from the grammar and computed average error between 
them and the learned grammars. The generated graphs 
were without noise. We show the results for one, two, and 
three non-terminals in Figure 6. Below the three 
dimensional plots, for clarity, we give two dimensional 
plots with triangles representing the errors. The larger and 
lighter the triangle the larger is the error. We see that the 
error increases as the number of different labels 
decreases. We see on the two dimensional plots the shift 
in error towards graphs with higher MDL when the 
number of non-terminals increases.  
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Figure 6 : Error as a function of MDL and number of different 
labels used in a grammar definition (one, two and three non-
terminals respectively). 
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5.4  Learning Curves 

We wanted to examine the learning process on a graph 
grammar with several productions. Since there are an 
infinite number of different graph grammars, we decided 
to select one example with several different graph 
structures used in the grammar productions. We show this 
example in Figure 7, where we see the graph grammar 
used to generate graphs. There are five productions. The 
last production with only one node is a terminating 
production. Each graph in the first four productions had 
two non-terminal nodes. The first four productions are 
chosen with probability 0.1 in the generation process. The 
terminating production is chosen with probability 0.6. 

 

 
Figure 7: Graph grammar used for graph generation 
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Figure 8: Error and time as a function of number of graphs in the 
training set.  
 
We generate sets of graphs with 10, 20, 30, and up to 100 
graphs generated from the grammar in Figure 7. Every 
graph in the set has 30 to 40 nodes. We compare the first 
four grammar productions found by our algorithm to the 
original grammar in Figure 7. As a measure of an error, 
we use the minimal match cost of a transformation from 
one graph structure to the other, as described in section 
5.1 where we talk about the measure of the error. We 
calculate the match cost of the structure of the graph from 
the first inferred grammar production to the four 
structures of the original productions and choose the 
smallest value. Then, we calculate the match cost of the 
structure from the second inferred production to the three 
structures from the original grammar not selected before 
and select the smallest value. Similarly, we find the 
smallest match cost between the structure of the third 
inferred production and the two structures left. The last 
inferred production we compare to the remaining 
production from the original grammar. The inference 

error we compute as a sum of the four errors we just 
explained. We repeat generation and error determination 
thirty times and compute the average value of the error. In 
Figure 8 we show the grammar inference error and time 
as a function of the number of graphs in the input set. We 
see that time in the range 10 to 100 graphs has close to 
linear increase. The error decreases sharply as we increase 
the set of graphs from 10 to 30. The error does not reach 
zero. The input graph has now four patterns. We often 
infer productions which contain two of the patterns or a 
portion of two patterns which causes the error.   

5.5  Biological networks 

The biological networks used in our experiments were 
from the Kyoto Encyclopedia of Genes and Genomes. 
(KEGG) (Kanehisa, et al., 2006). We use a graph 
representation which has labels on vertices and edges. 
The graphs represent processes like metabolism, 
membrane transport, and biosynthesis. We group the 
graphs into sets which allow us to search for common 
recursive patterns which can help to understand basic 
building blocks and hierarchical organization of 
processes. The label entry represents a molecule, a 
molecule group or a pathway. A node labeled entry can be 
connected to a node labeled type. The type can be a value 
of the set: enzyme, ortholog, gene, group, compound, or 
map. A reaction is a process where a material is changed 
to another material catalyzed by an enzyme. A reaction, 
for example, can have one or more enzyme entries, and 
one or more compounds. Labels on edges show 
relationships between entities. The meanings are:  
Rct_to_P : reaction to Product , S_to_Rct : substrate to 
reaction, E_to_Rct : enzyme (gene) to reaction, E_to_Rel: 
enzyme to relation, Rel_to_E: relation to enzyme. Nodes 
labeled ECrel indicate an enzyme-enzyme relation 
meaning that two enzymes catalyze successive reactions.  

We use ten species in our experiments. The abbreviated 
names of the species and their meanings are: bsu - 
Bacillus subtilis, sty - Salmonella enterica serovar Typhi 
CT18, xcc - Xanthomonas campestris pv. campestris 
ATCC 33913, pto - Picrophilus torridus, mka - 
Methanopyrus kandleri, pho - Pyrococcus horikoshii, sfx - 
Shigella flexneri 2457T (serotype 2a), efa - Enterococcus 
faecalis, bar - Bacillus anthracis Ames 0581,  

The species we selected randomly from the database.  The 
number of networks is different for each species. We 
wanted to see how our algorithm performs when we 
increase sample size of graphs supplied to our inference 
algorithm.  For this purpose we divided all the networks 
into 11 sets such that the last set (11th) has all the species. 
Set 10 excludes the 11th portion of all networks. Set 9 
excludes 2/11 of all networks and set 1 has 1/11 of all 
networks. If all networks in the species do not divide by 
11 evenly we distribute the remaining networks randomly 
to the 11 sets.   
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Figure 9: Change in inferred grammar measured in reference to 
the biggest set in networks of ten species.  
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Figure 10: Graph grammar inferred from a set of thirty (a) and 
one hundred and ten (b) graphs of Picrophilus torridus (pto). 

We would like to compare our inferred grammar from 
sets of different sizes to the original, true, ideal grammar 
which represents the species. However, such a graph 
grammar is not known. In the first experiment we adopted 
as an original grammar the grammar inferred from the last 
set. From each set we infer four grammar productions 
which score the highest in the evaluation. We compute the 
error (distance) of an inferred grammar to the grammar 
inferred from the set with all networks. The computation 
of an error is the same as it is described in section 5.4 on 
Learning Curves. The error is the minimal number of 

edges, vertices, and labels required to be change or 
removed to transform the structure of graph productions 
from one grammar to the other. In figures we refer to it as 
#transformations. In Figure 9 we show the results of the 
experiment. Every value in the Figure 9 is an average 
from three runs. In every run we randomly shuffle the 
networks over 11 sets such that sets are different in every 
run. In Figure 10 we show the graph grammar inferred 
from a set of thirty and a set of one hundred and ten 
graphs of Picrophilus torridus (pto). 

The experiments on the biological network domain give 
us insight into the performance of the algorithm and to the 
biological networks. Examining Figure 9 we notice that 
some species, like dme, have a very regular set of 
biological networks. Increasing the size of the set does not 
change the inferred grammar. While in other species, like 
xcc, the set of biological networks is very diverse 
resulting in significant changes on the curve. Several 
curves, pto, pho, efa, gradually decrease with the last 
values being zero. It shows us that our algorithm 
performed well and with increasing number of graphs in 
the input set we find the grammar which does not change 
more with increased number of graphs which indicates 
that grammar found represents the input set well. The 
very bottom chart in Figure 9 shows the average change. 
We see that with the increasing number of graphs in the 
input sets the curve declines to zero which tells us that 
with the increasing number of graphs we infer more 
accurate grammar.  

6.  Conclusions and Future Work 

We have studied algorithms for inferring node and edge 
replacement graph grammars. The algorithm starts from 
all nodes with the same label and grows them by adding 
to them one node or a node and an edge at a time. We 
developed a substructure which consists of the definition 
of a graph and all subgraphs appearing in the input graph 
that are isomorphic to this graph definition (i.e., 
instances). The overlap of instances proposes a recursive 
graph grammar production which expresses concepts of 
‘one or more’ of the same substructures. The input graph 
to our algorithm is an arbitrary directed or undirected 
graph with labels on nodes and edges. 

Grammar productions with graphs of higher complexity 
measured by MDL are inferred with smaller error. The 
error of grammar inference increases as the number of 
different labels used in the grammar decreases. In 
experiments with biological networks we notice that some 
species, like dme, have a very regular set of biological 
networks. Increasing the size of the set does not change 
the inferred grammar. While in other species, like xcc, the 
set of biological networks is very diverse. Several curves 
(pto, pho, efa), which represent the change in error with 
the increased sample set, gradually decrease, with the last 
values being zero. It shows us that our algorithm 
performed well and with an increasing number of graphs 
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in the input set we find the grammar, which does not 
change more with an increased number of graphs, which 
indicates that the grammar found represents the input set 
well. 

Grammars inferred by the approach developed by Jonyer 
et al. (2004) were limited to chains of isomorphic 
subgraphs which must be connected by a single edge. 
Since the connecting edge can be included in the 
production’s subgraph, and isomorphic subgraphs will 
overlap by one vertex, our approach can infer Jonyer et 
al.’s  class of grammars..  

We would like to indicate general future directions in 
graph grammar inference research. They are:  

(1) Develop algorithms which allow for learning larger 
classes of graph grammars. We extended classes of 
presently learnable graph grammars. It is possible to 
extend it even further into context sensitive graph 
grammars where we could still replace nodes and edges, 
but whether or not this replacement takes place depends 
on the neighborhood of the replaced node or edge. In 
order to regenerate structures we would need more 
sophisticated generation mechanism with a context 
sensitive embedding mechanism. This mechanism, 
inferred during induction, would indicate nodes to merge 
during the generation process. We can explore other 
techniques like decomposition of graphs in searching for 
the best grammar which describes the data. 

(2) Investigate learnable properties of graphs from the 
perspective of graph grammars.  

(3) Identify experimental areas and show the significance 
of graph grammar inference in these domains. One of the 
new domains we approach is visual languages, where 
graph grammar inference from the sample of a language 
can give a grammar to be used to check newly written 
programs.  

(4) Use graph grammar inference to identify building 
blocks, modularity and motifs in biology, software, social 
networks, and electronics circuits. We did experiments in 
biology and XML domains. Biological and chemical 
structures are still very promising areas of the application 
of recursive graph grammars. Social networks, Very 
Large Scale Integrated circuits, and the Internet are 
domains with relational data whose hierarchy and 
recursive properties we can explore with graph grammars.  

(5) Expand graph grammar inference to learning 
stochastic graph grammars. This extension would require 
assigning a probability to each production. We can 
evaluate this probability based on the portion of the input 
graph covered by the inferred production. 
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	A substructure S of a graph G is a data structure which consists of: (1) graph definition of a substructure SG which is a graph isomorphic to a subgraph of G, (2)  list of instances (I1, I2, …, In) where every instance is a subgraph of G isomorphic to SG.

