
Inference of Node and Edge Replacement Graph Grammars

Jacek P. Kukluk

Dept. of Computer Science and Engineering
University of Texas at Arlington

Jkukluk@gmail.com

Lawrence B. Holder, Diane J. Cook

School of Electrical Engineering and Computer Science
Washington State University

holder@wsu.edu, cook@eecs.wsu.edu

Abstract
In this paper we study the inference of node and
edge replacement graph grammars. We search
for frequent subgraphs and then check for
overlap among the instances of the subgraphs in
the input graph. If subgraphs overlap by one
node, we propose a node replacement graph
grammar production. If subgraphs overlap by
two nodes or two nodes and an edge, we propose
an edge replacement graph grammar production.
We also can infer a hierarchy of productions by
compressing portions of a graph described by a
production and then inferring new productions
on the compressed graph. We validate the
approach in experiments where we generate
graphs from known grammars and measure how
well the approach infers the original grammar
from the generated graph. We show the graph
grammars found in biological molecules,
biological networks and analyze learning curves
of the algorithm.

1. Introduction

Noam Chomsky (1956) pointed out that one of the main
concerns of a linguist is to discover simple grammars for
natural languages and study those grammars with the
hope of finding a general theory of linguistic structure.
While string grammars represent language, we are
looking for graph grammars that represent graph
properties and can generalize these properties from finite
graph examples into generators that can generate an
infinite number of graphs. String grammars can be
inferred from a finite number of sentences and generalize
to an infinite number of sentences. Inferring graph
grammars will generalize the knowledge from the
examples into a concise form and generalize to an infinite
number of entities from the domain.

We study the inference of node and edge replacement
graph grammars. We search for frequent subgraphs and
then check for overlap among the instances of the

subgraphs in the input graph. If subgraphs overlap by one
node, we propose a node replacement graph grammar
production. If subgraphs overlap by two nodes or two
nodes and an edge, we propose an edge replacement
graph grammar production. We also can infer a hierarchy
of productions by compressing portions of a graph
described by a production and then inferring new
productions on the compressed graph. We validate the
approach in experiments where we generate graphs from
known grammars and measure how well the approach
infers the original grammar from the generated graph. We
show the graph grammars found in biological molecules
and biological networks and analyze learning curves of
the algorithm

2. Related work

A vast amount of research has been done in inferring
grammars. These analyses focus on string grammars
where symbols appear in a sequence. We are concerned
with graph grammars, which can represent much larger
classes of problems than string grammars. Only a few
studies can be found in graph grammar inference.

Jeltsch and Kreowski (1990) did a theoretical study of
inferring hyperedge replacement graph grammars from
simple undirected, unlabeled graphs. Their paper leads
through an example where from four complete bipartite
graphs (K3,1;,K3,2; K3,3; K3,4), the authors describe the
inference of a grammar that can generate a more general
class of bipartite graphs (K3,n), where n≥1. The authors
define four operations that lead to a final hyperedge
replacement grammar. Jeltsch and Kreowski start the
process from a grammar which has all the sample graphs
in its productions. Then they transform the initial
productions into productions that are more general but can
still produce every graph from the sample graphs. Their
approach guarantees that the final grammar will generate
graphs that contain all sample graphs.

Oates, Doshi, and Huang (2003) discuss the problem of
inferring probabilities of every grammar rule for
stochastic hyperedge replacement context free graph
grammars. They call their program Parameter Estimation
for Graph Grammars (PEGG). They assume that the
grammar is given. Given a structure of a grammar S and a

 ICML-2007

finite set of graphs E generated by grammar S, they ask
what are the probabilities θ associated with every rule of
the grammar. Their strategy is to look for a set of
parameters θ that maximizes the probability p(E| S, θ).

In terms of similarity to string grammar inference we
consider the Sequitur system developed by Nevill-
Manning and Witten (1997). Sequitur infers a hierarchical
structure by replacing substrings based on grammar rules.
The new, compressed string is searched for substrings
which can be described by the grammar rules, and they
are then compressed with the grammar and the process
continues iteratively. Similarly, in our approach we
replace the part of a graph described by the inferred graph
grammar with a single node and we look for grammar
rules on the compressed graph and repeat this process
iteratively until the graph is fully compressed.

Jonyer et al.’s approach to node-replacement graph
grammar inference (Jonyer, Holder, and Cook, 2002,
2004) starts by finding frequently occurring subgraphs in
the input graphs. They check if isomorphic instances of
the subgraphs that minimize the measure are connected by
one edge. If they are, a production S→ PS is proposed,
where P is the frequent subgraph. P and S are connected
by one edge. Jonyer’s method of testing if subgraphs are
adjacent by one edge limits his grammars to descriptions
of “chains” of isomorphic subgraphs connected by one
edge. Since an edge of a frequent subgraph connecting it
to the other isomorphic subgraph can be included to the
subgraph structure, testing subgraphs for overlap allows
us to propose a class of grammars that have more
expressive power than the graph structures covered by
Jonyer’s grammars. For example, testing for overlap
allows us to propose grammars which can describe tree
structures, while Jonyer’s approach does not allow for
tree grammars.

3. Definitions

We give the definition of a graph and a graph grammar
which is relevant to our approach and the implemented
system. The defined graph has labels on vertices and
edges. Every edge of the graph can be directed or
undirected. The definition of a graph grammar describes
the class of grammars that can be inferred by our
approach. We emphasize the role of recursive productions
in the name of the grammar, because the type of inferred
productions are such that the non-terminal label on the
left side of the production appears one or more times in
the node labels of a graph on the right side. This is the
main characteristic of our grammar productions. Our
approach can also infer non-recursive productions. The
embedding mechanism of the grammar consists of
connection instructions. Every connection instruction is a
pair of vertices that indicate where the production graph
can connect to itself in a recursive fashion.

A labeled graph G is a 6-tuple, ()LEVG ,,,,, ηνμ= ,
where
V - is the set of nodes,

VVE ×⊆
LV →:

- is the set of edges,
μ - is a function assigning labels to the nodes,

LEv →: - is a function assigning labels to the edges,
}1,0{: →Eη - is a function assigning direction property to

edges (0 if undirected, 1 if directed).
L - is a set of labels on nodes and edges.

A node replacement recursive graph grammar is a tuple

()PGr ,,, ΓΔ∑= , where
∑ - is an alphabet of node labels,
Δ - is an alphabet of terminal node labels, ∑⊆Δ ,
Γ - is an alphabet of edge labels, which are all terminals,
P - is a finite set of productions of the form ,
where

),,(CGd
Δ−∑∈d

V

, is a graph, C is an embedding
mechanism with a set of connection instructions,

G

VC ×⊆ , where V is the set of nodes of . A
connection instruction i

G
Cvv j ∈),(

iv
G

 implies that derivation
can take place by replacing in one instance of G with

 in another instance of . All the edges incident to
i are incident to . All the edges incident to remain

unchanged.

jv
v jv jv

An edge replacement recursive graph grammar is a 5-
tuple ()PGr ,,,, ΩΓΔ∑= , where
∑ - is an alphabet of node labels,
Δ - is an alphabet of terminal node labels, ∑⊆Δ ,
Γ - is an alphabet of edge labels,
Ω -is an alphabet of terminal edge labels, ∑⊆Ω

,,(Gd
,

P - is a finite set of productions of the form , G is
a graph, where

)C
Ω−Γ∈d , is an embedding mechanism

with a set of connection instructions,
C

)V;(VVVC ××⊆ ,
where is the set of nodes of . A connection
instruction lkji

V G
Cvvvv ∈),;

v
,(implies that derivation can

take place by replacing i , k in one instance of with
lj respectively, in another instance of G . All the

edges incident to iv are incident to j , and all the edges
incident to kv are incident to l . All the edges incident to

j and k remain unchanged. If, in derivation process after
applying connection instruction (kji , nodes

ji are adjacent by an edge, we call edge ji

v G

), lvv
,(vve

v

v

v ,

v

v ,

v

v

v
v

;v,
)= a

real edge, otherwise edge ji),(v ve = is used only in the
specification of the grammar and we call this edge a
virtual edge. We introduce the definition of two data
structures used in our algorithm.

A substructure S of a graph G is a data structure which
consists of: (1) graph definition of a substructure SG
which is a graph isomorphic to a subgraph of G, (2) list
of instances (I1, I2, …, In) where every instance is a
subgraph of G isomorphic to SG.
A recursive substructure recursiveSub is a data structure
which consists of:

(1) graph definition of a substructure SG which is a graph
isomorphic to a subgraph of G

 ICML-2007

(2) list of connection instructions which are pairs of
integer numbers describing how instances of the
substructure can overlap to comprise one instance of
the corresponding grammar production rule.

(3) List of recursive instances (IR1, IR2, …, IRn) where
every instance IRk is a subgraph of G. Every instance
IRk consist of one or more isomorphic copies of SG,
overlapping by no more than one vertex in the
algorithm for node graph grammar inference and no
more than two vertices in edge grammar inference.

.
In our definition of a substructure we refer to subgraph
isomorphism. However, in our algorithm we are not
solving the subgraph isomorphism problem. We are using
a polynomial time beam search to discover substructures
and graph isomorphism to collect instances of the
substructures.

4. The Graph Grammar Inference Algorithms

An example in Figure 1 shows a graph composed of three
overlapping substructures. The algorithm generates
candidate substructures and evaluates them using any one
of the learning biases, which are discussed later. The
input to our algorithm is a labeled graph G which can be
one connected graph or set of graphs. G can have directed
or undirected edges. The algorithm begins by creating a
list of substructures where every substructure is a single
node and its instances are all nodes in the graph with the
same node label. Initially, the best substructure is the
node with the most instances. The substructures are
ranked and placed on the expansion queue Q. It then
extends all substructures in Q in all possible ways by a
single edge and a node or only by single edge if both
nodes are already in the graph definition of the
substructure. We keep all extended substructures in
newQ. We evaluate substructures in newQ according to
the chosen evaluation heuristic.

Figure 1: A graph with overlapping substructures and a graph
grammar representation of it.

The total number of substructures considered is
determined by the input parameter Limit. The best
substructure identified becomes the right side of the first
grammar production, and the graph G is compressed
using this best substructure. Compression replaces every
instance of best substructure with a single non-terminal
node. This node is labeled with a non-terminal label. The

compressed graph is further processed until it cannot be
compressed any more, or some user-defined stopping
condition is reached (maximum number of productions,
for instance). In consecutive iterations the best
substructure can have one or more non-terminal labels. It
allows us to create a hierarchy of grammar productions.
The input parameter Beam specifies the width of the
beam search, that is, the length of Q. The Algorithm 1
shows the pseudocode.

Algorithm 1 Graph grammar discovery.

INFER_GRAMMAR (graph G, integer Beam, integer
Limit)

1. grammar={}
2. repeat
3. queue Q ={v | v is a node in G having a unique

label}
4. bestSub= first substructure in Q
5. repeat
6. newQ ={}
7. for each substructure S ∈ Q
8. newSubs = extend substructure S in all

possible ways by a single edge and a node
9. recursiveSub =

RECURSIFY_SUBSTRUCTURE(S)
10. newQ = newQ ∪ newSubs

∪ recursiveSub
11. Limit=Limit-1
12. evaluate substructures in newQ , maintain

length(newQ) < Beam eliminating
substructure with the lowest value if necessary

13. end for
14. if best substructure in newQ better than

bestSub
15. then bestSub = best substructure in newQ
16. Q=newQ
17. until Q is empty or Limit ≤ 0
18. grammar = grammar ∪ bestSub
19. G = G compressed by bestSub
20. until bestSub cannot compress the graph G
21. return grammar

Recursive productions are identified during the previously
described search process by allowing instances to grow
and overlap. Any two instances are allowed to overlap by
only one vertex. The recursive substructure is evaluated
along with non-recursive substructures and is competing
with non-recursive substructures for placement on Q.
Connection instructions are created by determining which
nodes overlapped across instances. Figure 2 shows an
example of a substructure that is the right side of a
recursive rule, along with its connection instructions
(Kukluk, Holder, and Cook, 2006).

The edge replacement algorithm operates on a data
structure called a substructure (similar to the algorithm for

 ICML-2007

node replacement grammar inference). A substructure
consists of a graph definition of the repetitive subgraph
and its instances. We illustrate it in Figure 3. We grow
substructures similarly as in the algorithm for node
replacement graph grammar inference, then we examine
instances for overlap. If two nodes 21 in G both belong
to two different instances (two overlapping instances), we
propose a recursive grammar rule. We determine the type
of non-terminal edge. If 21 are adjacent by an edge, it
is a real edge, and we determine its label which we use to
specify the terminating production. If 21 are not
adjacent, then the non-terminal edge is virtual. In

,vv

,vv

,vv
Figure 3

we illustrate how we determine connection instructions.

Figure 2: Substructure and its instances while determining
connection instructions (continuation of the example from
Figure 1).

One advantage of our algorithm is its modular design in
which the evaluation of candidate grammar rules is done
separately from the generation of these candidates. The
result is that any evaluation metric can be used to drive
the search. Different evaluation metrics are part of the
system and can be specified as arguments. We have had
great success with the minimum description length
(MDL) principle on a wide range of domains. MDL is an
information theoretic approach (Rissanen, 1989). The
description length of the substructure S given the input
graph G is calculated as DL(S,G) =DL(S)+DL(G|S),
where DL(S) is the description length of the subgraph,
and DL(G|S) is the description length of the input graph
compressed by the subgraph (Cook and Holder, 1994,
2000). An alternative measure is the size heuristic which
is computed as

()
() ()SGsizeSsize

Gsize
|+

where G is the input graph, S is a substructure and G|S is
the graph derived from G by compressing each instance
of S into a single node. size(t) can be computed simply by
summing the number of nodes and edges: size(t) =
vertices(t) + edges(t). The third measure is called
setcover, which is used for concept learning tasks using
sets of disconnected graphs. This measure maximizes the
number of positive examples in which the grammar
production is found while minimizing the number of such
negative examples.

Figure 3. The input graph (a), substructure graph definition (b)
and four overlapping instances of repetitive subgraph (c).

Our algorithms make use of the substructure discovery
algorithm described in Cook and Holder (2000). This
algorithm uses a heuristic search whose complexity is
polynomial in the size of the input graph. The overlap test
is the main computationally expensive addition of our
grammar discovery algorithm and it does not change its
complexity. The number of nodes of an instance graph is
not larger than V, where V is the number of nodes in the
input graph. Checking two instances for overlap will not
take more than time. The number of pairs of
instances is no more than , so the entire overlap test
will not take more than time.

)V(2O

O

2V
)V 4(

5. Experiments

5.1 Methodology

Having our algorithm implemented, we faced the
challenge of evaluating its performance. There are an
infinite number of grammars as well as graphs generated
from these grammars. We seek to understand the
relationship between graph grammar inference and
grammar complexity, and so need a measure of grammar
complexity. One such measure is the Minimum
Description Length (MDL) of a graph, which is the
minimum number of bits necessary to completely
describe the graph.

In our experiments we measure an error based on
structural difference. Another approach to measuring the
accuracy of the inferred grammar would be based on a
graph grammar parser. We would consider accurate the
inferred grammars that can parse the input graph. Graph
grammar parser would require subgraph isomorphism test
which is computationally expensive and much more
difficult in implementation than the error measure we are
using. For these reasons we did not pursue
implementation of graph grammar parser.

 ICML-2007

We would like our error to be a value between 0 and 1;
therefore, we normalize the error by having in the
denominator the sum of the size of the graph used in the
original grammar and the number of non-terminals. We
do not allow an error to be larger than 1; therefore, we
take the minimum of 1 and our measure as a final value.
The restriction that the error is not larger than 1 prohibits
unnecessary influence on the average error taken from
several values by inferred graph structure significantly
larger than the graph used in the original grammar.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−+
=

NTg
NTCIgg

Error
#)size(

##),(matchCost
,1min

1

21 ,

where
)g,matchCost(21g

2g

 is the minimal number of operations
required to transform to a graph isomorphic to , or

to a graph isomorphic to . The operations are:
insertion of an edge or node, deletion of a node or an
edge, or substitution of a node or edge label.

1g 2g

1g

CI# is the number of inferred connection instructions
NT# is the number of non-terminals in the original

grammar
)size(1g is the sum of the number of nodes and edges in

the graph used in the grammar production

5.2 Error as a function of noise and complexity of a
graph grammar

We used twenty nine graphs from Figure 5 in grammar
productions. We assigned different labels to nodes and
edges of these graphs except three nodes used for non-
terminals. As noise we added nodes and edges to the
generated graph structure. We compute the number of
added nodes from the formula (noise/(1-
noise))*number_of_nodes. Similary for edges. We
generated graphs with noise from 0 to 0.9 in 0.1
increments. For every value of noise and MDL we
generated thirty graphs from the known grammar and
inferred the grammar from the generated graph. We
computed the inference error and averaged it over thirty
examples. We generated 8700 graphs to plot each of the
three graphs in Figure 4. The first plot shows results for
grammars with one non-terminal. The second and the
third plot show results for grammars with two and three
non-terminals.

We average the value of an error over ten values of noise
which gives us the value we can associate with the graph
structure. It allowed us to order graph structures used in
the grammar productions based on average inference
error. In Figure 5 we show all twenty nine connected
simple graphs with three, four and five nodes used in
productions ordered in non-decreasing MDL value of a
graph structure.

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

M
DL

M
DL

M
DL

noise noise noise

er
ro

r

er
ro

r

er
ro

r

Figure 4: Error as a function of noise and MDL where graph
structure was not corrupted (one, two and three non-terminals
respectively).

Figure 5: Twenty nine simple connected graphs ordered
according to non-decreasing MDL value.

5.3 Error as a function of number of labels

We would like to evaluate how error depends on the
number of different labels used in a grammar. We
restricted graph structures used in productions to graphs
with five nodes. Every graph structure we labeled with 1,
2, 3, 4, 5 or 6 different labels. For every value of MDL
and number of labels we generated 30 different graphs
from the grammar and computed average error between
them and the learned grammars. The generated graphs
were without noise. We show the results for one, two, and
three non-terminals in Figure 6. Below the three
dimensional plots, for clarity, we give two dimensional
plots with triangles representing the errors. The larger and
lighter the triangle the larger is the error. We see that the
error increases as the number of different labels
decreases. We see on the two dimensional plots the shift
in error towards graphs with higher MDL when the
number of non-terminals increases.

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

20 40 60 80
0

1

2

3

4

5

6

7

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

20 40 60 80
0

1

2

3

4

5

6

7

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

20 40 60 80
0

1

2

3

4

5

6

7

Figure 6 : Error as a function of MDL and number of different
labels used in a grammar definition (one, two and three non-
terminals respectively).

 ICML-2007

5.4 Learning Curves

We wanted to examine the learning process on a graph
grammar with several productions. Since there are an
infinite number of different graph grammars, we decided
to select one example with several different graph
structures used in the grammar productions. We show this
example in Figure 7, where we see the graph grammar
used to generate graphs. There are five productions. The
last production with only one node is a terminating
production. Each graph in the first four productions had
two non-terminal nodes. The first four productions are
chosen with probability 0.1 in the generation process. The
terminating production is chosen with probability 0.6.

Figure 7: Graph grammar used for graph generation

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Er
ro

r,

Ti

m
e

 [s
ec

]

Figure 8: Error and time as a function of number of graphs in the
training set.

We generate sets of graphs with 10, 20, 30, and up to 100
graphs generated from the grammar in Figure 7. Every
graph in the set has 30 to 40 nodes. We compare the first
four grammar productions found by our algorithm to the
original grammar in Figure 7. As a measure of an error,
we use the minimal match cost of a transformation from
one graph structure to the other, as described in section
5.1 where we talk about the measure of the error. We
calculate the match cost of the structure of the graph from
the first inferred grammar production to the four
structures of the original productions and choose the
smallest value. Then, we calculate the match cost of the
structure from the second inferred production to the three
structures from the original grammar not selected before
and select the smallest value. Similarly, we find the
smallest match cost between the structure of the third
inferred production and the two structures left. The last
inferred production we compare to the remaining
production from the original grammar. The inference

error we compute as a sum of the four errors we just
explained. We repeat generation and error determination
thirty times and compute the average value of the error. In
Figure 8 we show the grammar inference error and time
as a function of the number of graphs in the input set. We
see that time in the range 10 to 100 graphs has close to
linear increase. The error decreases sharply as we increase
the set of graphs from 10 to 30. The error does not reach
zero. The input graph has now four patterns. We often
infer productions which contain two of the patterns or a
portion of two patterns which causes the error.

5.5 Biological networks

The biological networks used in our experiments were
from the Kyoto Encyclopedia of Genes and Genomes.
(KEGG) (Kanehisa, et al., 2006). We use a graph
representation which has labels on vertices and edges.
The graphs represent processes like metabolism,
membrane transport, and biosynthesis. We group the
graphs into sets which allow us to search for common
recursive patterns which can help to understand basic
building blocks and hierarchical organization of
processes. The label entry represents a molecule, a
molecule group or a pathway. A node labeled entry can be
connected to a node labeled type. The type can be a value
of the set: enzyme, ortholog, gene, group, compound, or
map. A reaction is a process where a material is changed
to another material catalyzed by an enzyme. A reaction,
for example, can have one or more enzyme entries, and
one or more compounds. Labels on edges show
relationships between entities. The meanings are:
Rct_to_P : reaction to Product , S_to_Rct : substrate to
reaction, E_to_Rct : enzyme (gene) to reaction, E_to_Rel:
enzyme to relation, Rel_to_E: relation to enzyme. Nodes
labeled ECrel indicate an enzyme-enzyme relation
meaning that two enzymes catalyze successive reactions.

We use ten species in our experiments. The abbreviated
names of the species and their meanings are: bsu -
Bacillus subtilis, sty - Salmonella enterica serovar Typhi
CT18, xcc - Xanthomonas campestris pv. campestris
ATCC 33913, pto - Picrophilus torridus, mka -
Methanopyrus kandleri, pho - Pyrococcus horikoshii, sfx -
Shigella flexneri 2457T (serotype 2a), efa - Enterococcus
faecalis, bar - Bacillus anthracis Ames 0581,

The species we selected randomly from the database. The
number of networks is different for each species. We
wanted to see how our algorithm performs when we
increase sample size of graphs supplied to our inference
algorithm. For this purpose we divided all the networks
into 11 sets such that the last set (11th) has all the species.
Set 10 excludes the 11th portion of all networks. Set 9
excludes 2/11 of all networks and set 1 has 1/11 of all
networks. If all networks in the species do not divide by
11 evenly we distribute the remaining networks randomly
to the 11 sets.

 ICML-2007

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 2 3 4 5 6 7 8 9 10 11

set number

#t
ra

ns
fo

rm
at

io
ns bsu

dme
sty
xcc
pto

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5 6 7 8 9 10 11

set number

#t
ra

ns
fo

rm
at

io
ns mka

pho
stx
efa
bar

0.0
2.0
4.0
6.0
8.0

10.0
12.0

1 2 3 4 5 6 7 8 9 10 11

set number

#t
ra

ns
fo

rm
at

io
ns

Average

Figure 9: Change in inferred grammar measured in reference to
the biggest set in networks of ten species.

typeentry gene

reaction
E_to_Rct

entryentry
S_to_RctRct_to_P

type type

compoundcompound

S1

S2 entry enzymetype

S3 entry compoundtype

S4

entry|S4

relation maplink
type

Real_to_E

compound

subtype
1

1-1

S1 entry compoundtype

S2 entry enzymetype

entry type gene

reaction

S1S1

Rct_to_PS_to_Rct

S3

relationS4

E_to_Rct

type ECrel
subtype

compound

Figure 10: Graph grammar inferred from a set of thirty (a) and
one hundred and ten (b) graphs of Picrophilus torridus (pto).

We would like to compare our inferred grammar from
sets of different sizes to the original, true, ideal grammar
which represents the species. However, such a graph
grammar is not known. In the first experiment we adopted
as an original grammar the grammar inferred from the last
set. From each set we infer four grammar productions
which score the highest in the evaluation. We compute the
error (distance) of an inferred grammar to the grammar
inferred from the set with all networks. The computation
of an error is the same as it is described in section 5.4 on
Learning Curves. The error is the minimal number of

edges, vertices, and labels required to be change or
removed to transform the structure of graph productions
from one grammar to the other. In figures we refer to it as
#transformations. In Figure 9 we show the results of the
experiment. Every value in the Figure 9 is an average
from three runs. In every run we randomly shuffle the
networks over 11 sets such that sets are different in every
run. In Figure 10 we show the graph grammar inferred
from a set of thirty and a set of one hundred and ten
graphs of Picrophilus torridus (pto).

The experiments on the biological network domain give
us insight into the performance of the algorithm and to the
biological networks. Examining Figure 9 we notice that
some species, like dme, have a very regular set of
biological networks. Increasing the size of the set does not
change the inferred grammar. While in other species, like
xcc, the set of biological networks is very diverse
resulting in significant changes on the curve. Several
curves, pto, pho, efa, gradually decrease with the last
values being zero. It shows us that our algorithm
performed well and with increasing number of graphs in
the input set we find the grammar which does not change
more with increased number of graphs which indicates
that grammar found represents the input set well. The
very bottom chart in Figure 9 shows the average change.
We see that with the increasing number of graphs in the
input sets the curve declines to zero which tells us that
with the increasing number of graphs we infer more
accurate grammar.

6. Conclusions and Future Work

We have studied algorithms for inferring node and edge
replacement graph grammars. The algorithm starts from
all nodes with the same label and grows them by adding
to them one node or a node and an edge at a time. We
developed a substructure which consists of the definition
of a graph and all subgraphs appearing in the input graph
that are isomorphic to this graph definition (i.e.,
instances). The overlap of instances proposes a recursive
graph grammar production which expresses concepts of
‘one or more’ of the same substructures. The input graph
to our algorithm is an arbitrary directed or undirected
graph with labels on nodes and edges.

Grammar productions with graphs of higher complexity
measured by MDL are inferred with smaller error. The
error of grammar inference increases as the number of
different labels used in the grammar decreases. In
experiments with biological networks we notice that some
species, like dme, have a very regular set of biological
networks. Increasing the size of the set does not change
the inferred grammar. While in other species, like xcc, the
set of biological networks is very diverse. Several curves
(pto, pho, efa), which represent the change in error with
the increased sample set, gradually decrease, with the last
values being zero. It shows us that our algorithm
performed well and with an increasing number of graphs

 ICML-2007

in the input set we find the grammar, which does not
change more with an increased number of graphs, which
indicates that the grammar found represents the input set
well.

Grammars inferred by the approach developed by Jonyer
et al. (2004) were limited to chains of isomorphic
subgraphs which must be connected by a single edge.
Since the connecting edge can be included in the
production’s subgraph, and isomorphic subgraphs will
overlap by one vertex, our approach can infer Jonyer et
al.’s class of grammars..

We would like to indicate general future directions in
graph grammar inference research. They are:

(1) Develop algorithms which allow for learning larger
classes of graph grammars. We extended classes of
presently learnable graph grammars. It is possible to
extend it even further into context sensitive graph
grammars where we could still replace nodes and edges,
but whether or not this replacement takes place depends
on the neighborhood of the replaced node or edge. In
order to regenerate structures we would need more
sophisticated generation mechanism with a context
sensitive embedding mechanism. This mechanism,
inferred during induction, would indicate nodes to merge
during the generation process. We can explore other
techniques like decomposition of graphs in searching for
the best grammar which describes the data.

(2) Investigate learnable properties of graphs from the
perspective of graph grammars.

(3) Identify experimental areas and show the significance
of graph grammar inference in these domains. One of the
new domains we approach is visual languages, where
graph grammar inference from the sample of a language
can give a grammar to be used to check newly written
programs.

(4) Use graph grammar inference to identify building
blocks, modularity and motifs in biology, software, social
networks, and electronics circuits. We did experiments in
biology and XML domains. Biological and chemical
structures are still very promising areas of the application
of recursive graph grammars. Social networks, Very
Large Scale Integrated circuits, and the Internet are
domains with relational data whose hierarchy and
recursive properties we can explore with graph grammars.

(5) Expand graph grammar inference to learning
stochastic graph grammars. This extension would require
assigning a probability to each production. We can
evaluate this probability based on the portion of the input
graph covered by the inferred production.

References
Chomsky, N. (1956). Three models of language. IRE

Transactions in Information Theory 2, 3, 113-24

Cook, D. and Holder L. (1994) Substructure Discovery
Using Minimum Description Length and Background
Knowledge. Journal of Artificial Intelligence Research,
1, 231-255.

Cook, D. and Holder, L. (2000). Graph-Based Data
Mining. IEEE Intelligent Systems, 15(2), 32-41.

Jeltsch, E. and Kreowski, H. (1990). Grammatical
Inference Based on Hyperedge Replacement. Graph-
Grammars. Lecture Notes in Computer Science 532,
461-474.

Jonyer, I., Holder, L., and Cook, C. (2002) Concept
Formation Using Graph Grammars, Proceedings of the
KDD Workshop on Multi-Relational Data Mining.

Jonyer, I. Holder, L, and. Cook, D, (2004) MDL-Based
Context-Free Graph Grammar Induction and
Applications. International Journal of Artificial
Intelligence Tools, Volume 13, No. 1 65-79.

Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F.,
Itoh, M., Kawashima, S., Katayama, T., Araki, M., and
Hirakawa, M. (2006). From genomics to chemical
genomics: new developments in KEGG. Nucleic Acids
Res. 34, D354-357.

Kukluk, J., Holder, L., and Cook, D.(2006) Inference of
Node Replacement Recursive Graph Grammars, Sixth
SIAM International Conference on Data Mining

Kuramochi, M. and Karypis, G. (2001). Frequent
subgraph discovery. In Proceedings of IEEE 2001
International Conference on Data Mining (ICDM '01),
313-320.

Neidle, S. (1999) (editor) Oxford Handbook of Nucleic
Acid Structure. Oxford University Press, 326.

Nevill-Manning, G. and Witten, H. (1997). Identifying
Hierarchical Structure in Sequences: A linear-time
algorithm. Journal of Artificial Intelligence Research,
Vol 7, (1997), 67-82

Phan A.,. Kuryavyi V., Ma J, Faure A, Andreola M, Patel
D. (2005) An interlocked dimeric parallel-stranded
DNA quadruplex: A potent inhibitor of HIV-1 integrase.
Proceedings of the National Academy of Sciences, 102,
634 – 639.

Oates T., Doshi S., and Huang F. (2003). Estimating
Maximum Likelihood Parameters for Stochastic
Context-Free Graph Grammars. Lecture Notes in
Artificial Intelligence, 2835, 281-298. Springer-Verlag,

Rissanen, J. (1989). Stochastic Complexity in
StatisticalInquiry. World Scientific Company.

Yan X. and Han J., gSpan (2002): Graph-based
substructure pattern mining. In IEEE International
Conference on Data Mining, Maebashi City, Japan.

	A substructure S of a graph G is a data structure which consists of: (1) graph definition of a substructure SG which is a graph isomorphic to a subgraph of G, (2) list of instances (I1, I2, …, In) where every instance is a subgraph of G isomorphic to SG.

