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Abstract 
 
In this paper we describe an approach to learning 
node replacement graph grammars. This approach is 
based on previous research in frequent isomorphic 
subgraphs discovery. We extend the search for 
frequent subgraphs by checking for overlap among 
the instances of the subgraphs in the input graph. If 
subgraphs overlap by one node we propose a node 
replacement grammar production. We also can infer a 
hierarchy of productions by compressing portions of 
a graph described by a production and then infer new 
productions on the compressed graph. We validate 
this approach in experiments where we generate 
graphs from known grammars and measure how well 
our system infers the original grammar from the 
generated graph. We briefly discuss other grammar 
inference systems indicating that our study extends 
classes of learnable graph grammars.  
 

Keywords: Grammar Induction, Graph 

Grammars, Graph Mining. 

1. Introduction 
 
String grammars are fundamental to linguistics and 
computer science. Graph grammars can represent 
relations in data which strings cannot. Graph 
grammars can represent hierarchical structures in 
data and generalize knowledge in graph domains. 
They have been applied as analytical tools in physics, 
biology, and engineering [Gernert97, Milo02]. In this 
paper we study the problem of grammar inference. 
We introduce an algorithm which builds on previous 
work in discovering frequent subgraphs in a graph 
[Cook94]. We check if subgraphs overlap and if they 
overlap by one node, we use this node and subgraph 
structure to propose a node replacement graph 
grammar. A vast amount of research has been done in 
string grammar inference [Sakakibara97]. We found 
only a few studies in graph grammar inference, which 
we now describe.  
 

Jeltsch and Kreowski [Jeltsch90] did a theoretical 
study of inferring hyperedge replacement graph 
grammars from simple undirected, unlabeled graphs. 
Their paper leads through an example where from 
four complete bipartite graphs K3,1  , K3,2  , K3,3  , K3,4  , 
the authors describe the inference of a grammar that 
can generate a more general class of bipartite graphs  
K3,n , where 1≥n . The authors define four operations 
that lead to a final hyperedge replacement grammar. 
The operations are: INIT, DECOMPOSE, RENAME, 
and REDUCE. The INIT operation will start the 
process from a grammar which has all sample graphs 
in its productions and therefore it generates only the 
sample graphs. Then, the DECOMPOSE operation 
transforms the initial productions into productions 
that are more general but can still produce every 
graph from the sample graphs. RENAME allows for 
changing names of non-terminal labels. REDUCE 
removes redundant productions. They start the 
process from a grammar which has all the sample 
graphs in its productions. Then they transform the 
initial productions into productions that are more 
general but can still produce every graph from the 
sample graphs. Their approach guarantees that the 
final grammar will generate graphs that contain all 
sample graphs. 
 
Oates et al. [Oates03] discuss the problem of 
inferring probabilities of every grammar rule for 
stochastic hyperedge replacement context free graph 
grammars. They call their program Parameter 
Estimation for Graph Grammars (PEGG).  They 
assume that the grammar is given. Given a structure 
of a grammar S and a finite set of graphs E generated 
by grammar S, they ask what are the probabilities θ 
associated with every rule of the grammar. Their 
strategy is to look for a set of parameters θ that 
maximizes the probability p(E| S, θ).  
 
In terms of similarity to string grammar inference we 
consider the Sequitur system developed by Nevill-
Manning and Witten [Nevill97]. Sequitur infers 
hierarchical structure by replacing substrings based 
on grammar rules. The new, compressed string is 
searched for substrings which can be described by 
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grammar rules, and they are then compressed with 
the grammar and the process continues iteratively. 
Similarly, in our approach we replace the part of a 
graph described by the inferred graph grammar with 
a single node and we look for grammar rules on the 
compressed graph and repeat this process iteratively 
until the graph is fully compressed.  
 
The most relevant work to this research is Jonyer et 
al.’s approach to node-replacement graph grammar 
inference [Jonyer02, Jonyer04].  Their system starts 
by finding frequently occurring subgraphs in the 
input graphs. Frequent subgraphs are those that when 
replaced by single nodes minimize the description 
length of the graph. They check if isomorphic 
instances of the subgraphs that minimize the measure 
are connected by one edge.  If they are, a production 
S→ PS is proposed, where P is the frequent 
subgraph. P and S are connected by one edge. Our 
approach is similar to Jonyer’s in that we also start by 
finding frequently occurring subgraphs, but we test if 
the instances of the subgraphs overlap by one node. 
Jonyer’s method of testing if subgraphs are adjacent 
by one edge limits his grammars to description of 
“chains” of isomorphic subgraphs connected by one 
edge. Since an edge of a frequent subgraph 
connecting it to the other isomorphic subgraph can be 
included to the subgraph structure, testing subgraphs 
for overlap allows us to propose a class of grammars 
that have more expressive power than the graph 
structures covered by Jonyer’s grammars. For 
example, testing for overlap allows us to propose 
grammars which can describe tree structures, while 
Jonyer’s approach does not allow for tree grammars.  
 
In our approach we use the frequent subgraph 
discovery system Subdue developed by Cook and 
Holder [Cook94]. We would like to mention other 
systems developed to discover frequent subgraphs 
and therefore having potential to be modified into a 
system which can infer a graph grammar. Kuramochi 
and Karypis [Kuramochi01] implemented the FSG 
system for finding all frequent subgraphs in large 
graph databases. FSG starts by all frequent one and 
two edge subgraphs. Then, in each iteration, it 
generates candidate subgraphs by expanding the 
subgraphs found in the previous iteration by one 
edge. In every iteration, the algorithm checks how 
many times the candidate subgraph occurs within an 
entire graph. The candidates, whose frequency is 
below a user-defined level, are pruned. The algorithm 
returns all subgraphs occurring more frequently than 
the given level. In the candidate generation phase, 
computation costs of testing graphs for isomorphism 
are reduced by building a unique code for the graph 
(canonical labeling).  

Yan and Han introduced gSpan [Yan02], which does 
not require candidate generation to discover frequent 
substructures. The authors combine depth first search 
and lexicographic order in their algorithm. Their 
algorithm starts from all frequent one-edge graphs. 
The labels on these edges together with labels on 
incident nodes define a code for every such graph. 
Expansion of these one-edge graphs maps them to 
longer codes. The codes are stored in a tree structure 
such that if ),,,( 10 maaa K=α  

and ),,,,( 10 baaa mK=β , then the β code is a child 

of the α  code. Since every graph can map to many 
codes, the codes in the tree structure are not unique. 
If there are two codes in the code tree that map to the 
same graph and one is smaller then the other, the 
branch with smaller code is pruned during depth first 
search traversal of the code tree. Only the minimum 
code uniquely defines the graph. Code ordering and 
pruning reduces the cost of matching frequent 
subgraphs in gSpan. 
 
The challenge of using frequent subgraph mining 
systems like gSpan or FSG to infer graph grammars 
would be the modification to allow subgraph 
instances to overlap. Overlapping substructures are 
available as an option in the Subdue system 
[Cook94]. Also, Subdue allows for identification of 
one substructure with the best compression score, 
which we can modify to identify one grammar 
production with the best score, while FSG and gSpan 
return all candidate subgraphs above a user-defined 
frequency level leaving interpretation and final 
selection for the user.  
 
In the remainder of the paper we introduce the 
definition of the discussed graph grammars. Next we 
introduce an algorithm which we describe informally 
using an example. Afterwards, we give a more formal 
description. Then, we show experiments to reveal the 
advantages and limitations of our method. We close 
with some conclusions and future directions.  

2. Node replacement recursive graph 
grammar 

 
We give the definition of a graph and graph 
grammars which is relevant to our implementation. 
The defined graph has labels on vertices and edges. 
Every edge of the graph can be directed or 
undirected.   The definition of a graph grammar 
describes the class of grammars that can be inferred 
by our approach. We emphasize the role of recursive 
productions in the name of the grammar, because the 
type of inferred productions are such that the non-



terminal label on the left side of the production 
appears one or more times in the node labels of a 
graph on the right side. It is the main characteristic of 
our grammar productions. Our approach can also 
infer non-recursive productions. The embedding 
mechanism of the grammar consists of connection 
instructions. Every connection instruction is a pair of 
vertices that indicate where the production graph can 
connect to itself in a recursive fashion. Our graph 
generator can generate a larger class of graph 
grammars than defined below. We will describe the 
grammars used in generation later in the paper.  
 
A labeled graph G is a 6-tuple, 

( )LEVG ,,,,, ηνμ= , where 

V - is the set of nodes, VVE ×⊆ - is the set of 
edges,  LV →:μ  - is a function assigning labels to 

the nodes, LEv →:  - is a function assigning labels 

to the edges, }1,0{: →Eη - is a function assigning 
direction property to edges (0 if undirected, 1 if 
directed).  L - is a set of labels on nodes and edges.  
 
A node replacement recursive graph grammar is a 
tuple ( )PGr ,,, ΓΔ∑= , where 

∑ - is an alphabet of node labels,  

Δ - is an alphabet of terminal node labels, ∑⊆Δ ,  
Γ - is an alphabet of edge labels, which are all 
terminals,  
P - is a finite set of productions of the 
form ),,( CGd , where Δ−∑∈d , G is a graph, and 
there are two types of productions:  
(1)  recursive productions of the form ),,( CGd , 

with Δ−∑∈d , G is a graph, where there is at least 
one node in G labeled d . C  is an embedding 
mechanism with a set of connection instructions, 

VVC ×⊆ , where V  is the set of nodes of G .  A 

connection instruction Cvv ji ∈),(  implies that 

derivation can take place by replacing iv  in one 

instance of G  with jv  in another instance of G . All 

the edges incident to iv are incident to jv . All the 

edges incident to jv remain unchanged 

 (1) non-recursive production, there is no node in G  
labeled d (our inference system does not infer an 
embedding mechanism for these productions).  
 

3. The algorithm 
 
We will describe an algorithm informally allowing 
for an intuitive understanding of the idea. An 

example in Figure 1 shows a graph composed of 
three overlapping substructures.  The algorithm 
generates candidate substructures and evaluates them 
using the following measure of compression, 

( )
( ) ( )SGsizeSsize

Gsize

|+
 

where G is the input graph, S is a substructure and 
SG | is the graph derived from G  by compressing 

each instance of S into a single node. ( )gsize  can be 
computed simply by summing the number of nodes 
and edges: ( ) ( ) ( )gedgesgverticesgsize += . Another 

successful measure of ( )gsize  is the Minimum 
Description Length (MDL) discussed in detail in 
[Cook94]. Either of these measures can be used to 
guide the search and determine the best graph 
grammar. In our experiments we used only the size 
measure. 

 
Figure 1:  A graph with overlapping substructures 

and a graph grammar representation of it. 

 
In Figure 1, the subgraphs overlap at nodes 3 and 4. 
The algorithm starts by finding nodes with the same 
label. There are seven nodes labeled “a” and three 
nodes labeled “b”. The single node labeled “a” 
becomes a candidate substructure with seven 
instances I1={1}, I2={3}, I3={4}, I4={6}, I5={7},  
I6={9}, I7={10}.  The numbers in parentheses refer to 
the nodes in Figure 1. This initial substructure will be 
expanded by a node and an edge in each iteration of 
the algorithm’s main discovery loop.  Similarly, the 
initial substructure of a node labeled “b” and its 
instances are determined. Both of these substructures 
are expanded simultaneously. Let us follow the 
expansion of only one substructure, which starts from 
all nodes labeled “b.”  Table 1 gives the instance 
expansion at every step and a substructure value We 
expand the instances I by edge labeled y and a vertex 
labeled a, which gives us the set of instances I’.  
Instances I can also be expanded by edge z or x. 



Similarly, we expand I’ by edge z and a vertex a, 
which gives us I’’. I’ can also be expanded by edge 
x. We omit in Table 1 alternative expansions of I by 
z, x and I’ by x. These additional expansions are part 
of our algorithm. They lead to the same solution. 
When the set of instances I’’ is expanded by the edge 
with label x, we detect an overlap, i.e., two or more 
instances share the same node. The overlapping 
instances of the substructure allow us to propose the 
recursive graph grammar shown on the bottom of 
Figure 1. This grammar can compress the entire 
graph to one node and has a better substructure value 
than any other substructure discovered so far. 

The grammar from Figure 1 consists of a graph 
isomorphic to three overlapping substructures and 
connection instructions. We find connection 
instructions when we check for overlaps. In this 
example there are two connection instructions 1-3 
and 1-4. Hence, in generation of a graph from the 
grammar, in every derivation step an isomorphic 
copy of the subgraph definition will be connected to 
the existing graph by connecting node 1 of the 
subgraph to either a node 3 or a node 4 in the existing 
graph. The grammar shown on the bottom in Figure 1 
cannot only regenerate the graph shown on the top, 
but also generate generalizations of this graph. 
Generalization in this example means that the 
grammar describes graphs composed from one or 
more star looking substructures of four nodes labeled 
“a”, “b”. All these substructures overlap on a node 
with label “a”.   
 
Our graph grammar inference method is based on 
Cook et al.’s [Cook94] substructure discovery system 
called Subdue. Subdue is looking for repetitive, 
highly-compressing subgraphs. The algorithm starts 
by finding all nodes with the same label. It maintains 
a list of the best subgraphs found so far. In each 
iteration new candidates for the best subgraphs are 
created by expanding all the subgraphs in the list by 
one edge or edge and a node. Then, candidates for the 
best subgraphs are evaluated. In the evaluation 
process, every occurrence of a candidate subgraph 
within the entire graph is temporarily replaced by a 
new node. The compression achieved with this 
replacement is measured by calculating minimum 

description length or size (number of nodes + number 
of edges) of an original and compressed graph. Only 
subgraphs with the highest compression ratio remain 
in the list of the best subgraphs.  
 
The input to our algorithm is a graph G which can be 
one connected graph or set of disconnected graphs. G 
can have directed edges or undirected edges. The 
algorithm assumes labels on nodes and edges. The 
algorithm processes the list of substructures Q. In 
Figure 2 we see an example of a substructure 
definition. A substructure consists of a graph 
definition and a set of instances from the input graph 
that are isomorphic to the graph definition. The 
example in Figure 2 is a continuation of the example 
in Figure 1. The numbers in parentheses refer to 
nodes of the graph in Figure 1. 
 
The algorithm starts with a list of substructures where 
every substructure is a single node and its instances 
are all nodes in the graph with this node label. The 
best substructure is initially the first substructure in 
the Q list. We extend each substructure in Q in all 
possible ways by a single edge and a node or only by 
single edge if both nodes are already in the graph 
definition of the substructure. We allow instances to 
grow and overlap, but any two instances can overlap 
by only one node. We keep all extended substructures 
in newQ. We evaluate substructures in newQ. The 
recursive substructure is evaluated along with non-
recursive substructures and is competing with non-
recursive substructures. The total number of 
substructures considered is determined by the input 
parameter Limit. We compress G with best 
substructure.  Compression replaces every instance of 
best substructure with a single node. This node is 
labeled with a non-terminal label. The compressed 
graph is further processed until it cannot be 
compressed any more. In consecutive iterations best 
substructure can have one or more non-terminal 
labels. It allows us to create a hierarchy of grammar 
productions.  The input parameter Beam specifies the 
width of a beam search, i.e., the length of Q. For 
more details about the algorithm see [Cook94, 
Jonyer02, Jonyer04]. 

 

Table 1. Expansion of instances which start from nodes labeled “b” in Figure 1. 

Expansion Instances ( )
( ) ( )SGsizeSsize

Gsize

|+
 

initial instances I  ={ I1={2}, I2={5}, I3={8}} 19/(1+19)=0.95 
I expanded by y I’ ={ I1={2, 3}, I2={5, 6}, I3={8, 9} } 19/(3+13)=1.19 
I’ expanded by z I’’={ I1={2, 3, 4}, I2={5, 6, 7}, I3={8, 9, 10}} 19/(5+7)=1.58 
I’’ Expanded by x I’’’ ={ I1={2, 3, 4, 1}, I2={5, 6, 7, 3}, I3={8, 9, 10, 4}} (overlap !) 19/(7+1)=2.38 



 
Figure 2 assists us in explaining conversion of 
substructure S into recursive substructure. Every 
instance graph has two positive integers assigned to 
it. One integer, in parentheses in Figure 2, is the 
number of a node in the processed graph G. The 
second integer is a node number of an instance graph. 
The instances are isomorphic to the substructure 
graph definition and instance node numbers are 
assigned to them according to this isomorphism. 
Given pair of instances (I1, I2) we examine if there is 
a node Gv∈ , which also belongs to I1 and I2. We find 
two overlapping nodes, [3] and [4], examining node 
numbers in parentheses in the example in Figure 2.  
Having the number of node Gv∈ we find 
corresponding to v  two node numbers of instance 

graphs 1IvI ∈ and 2
' IvI ∈ . The pair of integers 

),( '
II vv  is a connection instruction. There are two 

connection instructions in Figure 2: 1-3 and 1-4. If 

),( '
II vv is not already in list of connections 

instructions for recursive substructure, we include it.  
 

 
Figure 2: Substructure and its instances while 

determining connection instructions (continuation of 
the example from Figure 1) 

A recursive instance is a connected subgraph of G 
which can be described by the discovered grammar 
production. It means that for every subset of 
instances {Im, Im+1, …, Il} from the instance list of 
substructure S, in which union  Im ∪  Im+1 ∪… ∪  Il  
is a connected graph, we create one recursive 
instance IRk= Im ∪  Im+1 ∪… ∪  Il  .  The recursive 
instances are no longer isomorphic as instances of S 
and they vary in size. Every recursive instance is 
compressed to a single node in the evaluation 
process.  
 
Subdue uses a heuristic search whose complexity is 
polynomial in the size of the input graph [Cook00]. 
Our modification does not change the complexity of 
this algorithm. The overlap test is the main 
computationally expensive addition of our grammar 
discovery algorithm. Analyzing informally, the 
number of nodes of an instance graph is not larger 

than V, where V is the number of nodes in the input 
graph. Checking two instances for overlap will not 

take more than )V( 2O time. The number of pairs of 

instances is no more than 2V , so the entire overlap 

test will not take more than )V( 4O  time.  

4. Hierarchy of productions 
 
In our first example from Figure 1, we described a 
grammar with only one production. Now we would 
like to introduce a complex example to illustrate the 
inference of a grammar which describes a more 
general tree structure. In Figure 3 we have a tree with 
all nodes having the same label.  
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Figure 3: The tree (a) and inferred tree grammar (b). 

There are two repetitive subgraphs in the tree. One 
has three edges labeled “a,” “b,” and “c.” The other 
has two edges with labels “x” and “y.”  There are 
also three edges K1, K2, and K3 which are not part of 
any repetitive subgraph. In the first iteration we find 
grammar production S1, because overlapping 
subgraphs with edges “a,” “b,” and “c” score the 
highest in compressing the graph. Examining 
production S1, we notice that node 3 is not involved 
in connection instructions. It is consistent with the 
input graph where there are no two subgraphs 
overlapping on this node. The compressed graph, at 
this point, contains the node S1, edges K1, K2, K3 
and subgraphs with edges “x” and “y.” In the second 
iteration our program finds all overlapping 
substructures with edges “x” and “y” and proposes 



production S2. Compressing the tree with production 
S2 results in a graph which we use as an initial 
production S, because the graph can be compressed 
no further. In Figure 3 productions for S1 and S2 
have graphs as terminals. We will omit drawing 
terminal graphs in subsequent figures. The tree used 
in this example was used in our experiments, and the 
grammar on the right in Figure 3 is the actual inferred 
grammar.  

5. Experiments 

5.1. Methodology 
Having our system implemented, we faced the 
challenge of evaluating its performance. There are an 
infinite number of grammars as well as graphs 
generated from these grammars. In our experiments 
we restricted grammars to node replacement 
grammars with two productions. The second 
production replaces a non-terminal node with a single 
terminal node. In Figure 4 we give an example of 
such a grammar. The grammar on the left is of the 
form used in generation. The grammar on the right is 
the inferred grammar in our experiment. The inferred 
grammar production is assumed to have a terminating 
alternative with the same structure as the recursive 
alternative, but with no non-terminals. We omit 
terminating production in Figure 4.  
 

 
Figure 4: Example of graph grammar used in the 

experiments. 

We developed a graph generator to generate graphs 
from a known grammar. We can generate directed or 
undirected graphs with labels on nodes and edges. 
Our generator produces a graph by replacing a non-
terminal node of a graph until all nodes and edges are 
terminal. The generation process expands the graph 
as long as there are any non-terminal edges or nodes. 
Since selection of a production is random according 
to the probability distribution specified in the input 
file, the number of nodes of a generated graph is also 
random. We place limits on the size of the generated 
graph with two parameters: minNodes and maxNodes. 
We generate graphs from the grammar until the 
number of nodes is between minNodes and 
maxNodes. We distinguish two different distorting 

operations to the graph generated from grammar: 
corruption and added noise. Corruption involves the 
redirection of randomly selected edges. The number 
of edges of a graph multiplied by noise gives the 
number of redirected edges, where noise is a value 
from 0 to 1. We redirect an edge  ),( 21 vve =  by 

replacing nodes 1v and 2v with two new, randomly 

selected graph nodes 1'v and 2'v . When we add noise, 
we do not destroy generated graph structure. We add 
new nodes and new edges with labels assigned 
randomly from labels used in already generated graph 
structure. We compute the number of added nodes 
from the formula (noise/(1- noise))* 
*number_of_nodes. The number of added edges we 
find from (noise/(1- noise))*number_of_edges. A 
new edge connects two nodes selected randomly 
from existing nodes of the generated structure and 
newly added nodes. 
 
We associate probabilities with productions used in 
generation. These probabilities define how often a 
particular production is used in derivations. 
Assigning probabilities to productions helps us to 
control the size of the generated graph. Our inference 
system does not infer probabilities. Oates et al. 
[Oates03] addresses the problem of inferring 
probabilities assuming that the productions of a 
grammar are given. We are considering inferring 
probabilities along with productions as a future work. 
  
We examined grammars with one, two, and three 
non-terminals. The first productions of the grammars 
have an undirected, connected graph with labels on 
nodes and edges on the right side.  We use all 
possible connected simple graphs with three, four, 
and five nodes as the structures of graphs used in the 
productions. There are twenty nine different simple 
connected undirected unlabeled graphs [Read98]. We 
show them in Figure 7. Our graph generator 
generates graphs from the known grammar that is 
based on one of the twenty nine graph structures. 
Then we use our inference system to infer the 
grammar from the generated graph. We measure an 
error between the original and inferred grammar. We 
use MDL as a measure of the complexity of a 
grammar.  Our results describe the dependency of the 
grammar inference error on complexity, noise, 
number of labels, and size of generated graphs.  

5.2. MDL as a measure of complexity of a 
grammar 

We seek to understand the relationship between 
graph grammar inference and grammar complexity, 
and so need a measure of grammar complexity. One 



such measure is the Minimum Description Length 
(MDL) of a graph, which is the minimum number of 
bits necessary to completely describe the graph. The 
MDL measure, which while not provably minimal, is 
designed to be a near-minimal encoding of a graph. 
See [Cook94] for a more detailed discussion.  
 
Since all the grammars in our experiments have two 
productions and the second production replaces a 
non-terminal with a single node, the complexity of 
the grammar will vary depending only on the graph 
on the right side of the first production. We would 
like our results for one, two and three non-terminal 
grammars to be comparable; therefore we do not 
want our measure of complexity of a grammar to be 
dependent on the number of non-terminals. In every 
graph used in the productions we reserve three nodes. 
We give the same label to these nodes. When we 
generate a graph, we replace one, two, or three labels 
of these nodes with the non-terminal S when we need 
a grammar with one, two or three non-terminals. 
However, when we measure MDL of a graph we 
leave the original three labels unchanged. In our 
experiments we always use that same non-terminal 
label. In the general case a production can contain 
different non-terminals. Every non-terminal would 
need to be counted as a different label of a graph and 
MDL would increase with increasing number of non-
terminals. 

5.3. Error 
We introduce a measure to compare the original 
grammar to the inferred grammar. Our definition of 
an error has two aspects. First, there is the structural 
difference between the inferred and the original graph 
used in the productions. Second, there is the 
difference between the number of non-terminals and 
the number of connection instructions. If there is no 
error, the number of non-terminals in the original 
grammar is the same as the number of connection 
instructions in the inferred grammar. We compute the 
structural difference between graphs with an 
algorithm for inexact graph match initially proposed 
by Bunke and Allermann [Bunke83]. For more 
details see also [Cook94]. We would like our error to 
be a value between 0 and 1; therefore, we normalize 
the error by having in the denominator the sum of the 
size of the graph used in the original grammar and 
the number of non-terminals. We do not allow an 
error to be larger than 1; therefore, we take the 
minimum of 1 and our measure as a final value.  
 

⎟
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#)size(

##),(matchCost
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1

21 ,        

where  

)g,matchCost( 21g  is the minimal number of 

operations required to transform 1g to a graph 

isomorphic to 2g , or 2g to a graph isomorphic to 

1g . The operations are: insertion of an edge or node, 
deletion of a node or an edge, or substitution of a 
node or edge label. CI#  is the number of inferred 
connection instructions. NT#  is the number of non-
terminals in the original grammar. )size( 1g  is the 
sum of the number of nodes and edges in the graph 
used in the grammar production 

5.4. Experiment 1: Error as a function of 
noise and complexity of a grammar 

We used twenty nine graphs from Figure 7 in 
grammar productions. We assigned different labels to 
nodes and edges of these graphs except three nodes 
used for non-terminals. We generated graphs with 
noise from 0 to 0.9 in 0.1 increments. For every value 
of noise and MDL we generated thirty graphs from 
the known grammar and inferred the grammar from 
the generated graph. We computed the inference error 
and averaged it over thirty examples. We generated 
8700 graphs to plot each of the three graphs in Figure 
5.  The first plot shows results for grammars with one 
non-terminal. The second and the third plot show 
results for grammars with two and three non-
terminals. We did not corrupt the generated graph 
structure in experiments in Figure 5. As noise we 
added nodes and edges to the generated graph 
structure. Figure 6 has the same results as Figure 5 
with the difference that we corrupted the graph 
structure generated from the grammar and then we 
added nodes and edges to the graph.  
 
We see trends in the plots in Figure 5 and Figure 6.  
Error decreases as MDL increases. A low value of 
MDL is associated with small graphs, with three or 
four nodes and a few edges. These graphs, when used 
on the right hand side of a grammar production, 
generate graphs with fewer labels than grammars 
with high MDL. Smaller numbers of labels in the 
graph increase the inference error, because 
everything in the graph looks similar, and the 
approach is more likely to propose another grammar 
which is very different than the original. As expected, 
the error increases as the noise increases in 
experiments with corrupted graph structure. 
However, there is little dependency of an error from 
the noise if the graph generated from the grammar is 
not corrupted (Figure 5). 
 
.  
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Figure 5: Error as a function of noise and MDL where graph structure was not corrupted. 
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Figure 6: Error as a function of noise and MDL where graph structure was corrupted. 

 

 

Figure 7: Twenty nine simple connected graphs ordered according to non-decreasing MDL value. 

   
Table 2: Twenty nine simple graphs ordered according to increasing average inference error of six experiments in 
Figure 5 and Figure 6. The numbers in the table refer to structures in Figure 7. 

 

We average the value of an error over ten values of 
noise which gives us the value we can associate with 
the graph structure.  It allowed us to order graph 

structures used in the grammar productions based on 
average inference error. In Figure 7 we show all 
twenty nine connected simple graphs with three, four 
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and five nodes used in productions ordered in non-
decreasing MDL value of a graph structure. In Table 
2 we give an order of graph structures for six 
experiments with corrupted and non-corrupted 
structures and one, two, and three non-terminals. The 
numbers in the table refer to structure numbers in 
Figure 7. We see in Table 2 that graph number 21 is 
close to the beginning of the list in all six 
experiments.  Graphs number 1, 2, and 11 are close to 
the end of all six lists. We conclude that when graph 
number 21 is used in the grammar production, it is 
the easiest for our inference algorithm to find the 
correct grammar. When graph number 1, 2, or 11 is 
used in the grammar production and generated graphs 
have noise present, we infer grammars with some 
error. We also observe a tendency of decreasing error 
with increasing MDL in the graph orders in Table 2. 
Graph 29 has the highest MDL, because it has the 
most nodes and edges. In five experiments graph 29 
is closer to the end of the list 
 
Quantitative definition of an error allows us to 
automate the process and perform tests on thousands 
of graphs. The error is caused by a wrongly inferred 
graph structure used in the production or number of 
connection instructions which is too large or too 
small. However, there are cases where the inferred 
grammar represents the graph well, but the graph in 
the production has a different structure. For example,  
we observed that the grammar with MDL=55.58 and 
graph number 11 causes an error even if we infer the 
grammar from graphs with no corruption and zero 
noise. The inferred graph structure contains two 
overlapping copies of the graph used in the original 
grammar production. We illustrate it in Figure 8. The 
structure has significant error, yet does subjectively 
capture the recursive structure of the original 
grammar. 
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Figure 8: An inference error where larger graph 

structure is proposed. 

5.5. Experiment 2: Error as a function of 
number of labels and complexity of a 
grammar 

 
We would like to evaluate how error depends on the 
number of different labels used in a grammar. We 
restricted graph structures used in productions to 
graphs with five nodes. Every graph structure we 
labeled with 1, 2, 3, 4, 5 or 6 different labels. For 
every value of MDL and number of labels we 
generated 30 different graphs from the grammar and 
computed average error between them and the 
learned grammars. The generated graphs were 
without corruption and without noise. We show the 
results for one, two, and three non-terminals in 
Figure 10. Below the three dimensional plots, for 
clarity, we give two dimensional plots with triangles 
representing the errors. The larger and lighter the 
triangle the larger is the error. We see that the error 
increases as the number of different labels decreases. 
We see on the two dimensional plots the shift in error 
towards graphs with higher MDL when the number 
of non-terminals increases.  
 
The average error for graphs with only one label is 1 
or very close to 1. The most frequent inference error 
results from the tendency of our algorithm to propose 
one-edge grammars when inferred from a graph with 
only one label. We illustrate this in Figure 9 where 
we see a production with a pentagon using only one 
label “a”. The inferred grammar has one edge with 
two connection instructions 1-1 and 1-2. Since all the 
edges in the generated graph have the same label and 
all the nodes have the same label, this grammar 
compresses the graph well and is evaluated highly by 
our compression-based measure. However, this one-
edge grammar cannot generate even a single 
pentagon. An evaluation measure which penalizes 
grammars for an inability to generate an input graph 
would bias the algorithm away from single-edge 
grammars and could correct the one-edge grammar 
problem. However, this approach would require 
graph-grammar parsing, which is computationally 
complex. 
 
                original grammar          inferred grammar 

 
Figure 9: Error where inferred grammar is reduced to 

production with single edge.  



5.6. Experiment 3: Error as a function of 
size of a graph and complexity of a 
grammar 

 
We generated graphs from grammars with two non-
terminals and noise=0.2. The number of nodes of the 
generated graphs was from the interval [x, x+20], 

where we change x from 20 to 420. For each value of 
x and MDL we generated thirty graphs and compute 
average inference error over them. We show in 
Figure 11 the results for corrupted and not corrupted 
graph structure. We concluded that there is no 
dependency between the size of a sample graph and 
inference error.  
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Figure 10 : Error as a function of MDL and number of different labels used in a grammar definition. 
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Figure 11: Error as a function of MDL and size of 
generated graphs (noise=0.2, two non-terminals): (a) 

uncorrupted graph structure, (b) corrupted graph 
structure 

5.7. Experiment 4: Limitations 
  
In Figure 12 we show an example illustrating the 
limits of our approach. In Figure 12 (a) we have a 
graph consisting of overlapping squares. All labels on 
nodes are the same, and we omit them. The squares 
do not overlap by one node but by an edge. Our 
algorithm assumes that only one node overlaps in the 
instances of the substructure and therefore infers the 
grammar shown in Figure 12(b). The inferred 
grammar can generate chains, an example of which is 
shown in Figure 4 (c). The original input graph is not 
in the set of graphs generated by the inferred 
grammar. An extension of our method to overlapping 
edges would allow us to infer the correct grammar in 
this example.  

  



  
Figure 12: Graph with overlapping squares (a), 
inferred grammar (b), and graph generated from 

inferred grammar (c) 

Figure 13 shows another example illustrating the 
limits of our algorithm. The first graph in the first 
production on the left is a square with two non-
terminals labeled S1, and the graph of the second 
production is a triangle with one non-terminal labeled 
S. Our algorithm is not designed to find alternating 
productions of this type. We generated a graph from 
the grammar on the left, and the grammar we inferred 
is on the right in Figure 13. The inferred grammar has 
one production in which the graph combines both the 
triangle and square. The set of graphs generated by 
alternating squares and triangles according to the 
grammar from the left does not match exactly the set 
of graphs of the inferred grammar. Nevertheless, we 
consider it an accurate inference, because the inferred 
grammar will describe the majority of every graph 
generated by the original grammar. 

 

 
Figure 13: The grammar with alternating productions 

(left) and inferred grammar (right).  

5.8. Experiment 5: Chemical structure 
 
As an example from the real-world domain of 
chemistry, we use the structure of cellulose with 
hydrogen bonding as the input graph in our next 
experiment. Figure 14 shows the structure of the 
molecule and the grammar production we found in 

this structure. The grammar production we found 
captures the underlying motif of the chemical 
structure. It shows the repetitive connected 
component, the basic building block of the structure. 
We can search for such underlining building motifs 
in different domains, hoping that they will improve 
our understanding of chemical, biological, computer, 
and social networks.  

 
(a) 

 
(b) 

Figure 14: The structure of cellulose with hydrogen 
bonding (a) and the inferred grammar production (b). 

 

6. Conclusion and future work 
 
We described an algorithm for inferring certain types 
of graph grammars we call recursive node 
replacement graph grammars. The algorithm is based 
on previous work in frequent substructure discovery. 
It checks if frequent subgraphs overlap by a node and 
proposes a graph grammar if they do. The algorithm 
we described has its limitations: the left side of the 
production is limited to one single node; only 
connecting two single nodes is allowed in 
derivations. The algorithm finds recursive 
productions if repetitive patterns occur within an 
input graph and they overlap. If such patterns do not 
exist, the algorithm finds non-recursive productions 
and builds hierarchical structure of the input data. 
Grammar productions with graphs of higher 
complexity measured by MDL are inferred with 



smaller error. There is little dependency of error on 
noise if the generated graphs are not corrupted. The 
error of grammar inference increases as the number 
of different labels used in the grammar decreases. 
There is no dependency between the size of a sample 
graph and inference error. If all labels on nodes are 
the same and all labels on edges are the same, the 
algorithm produces a grammar which has only one 
edge in the graph definition. One-edge grammars 
over-generalize if the input graph is a tree, and they 
are inaccurate in many other graphs. This tendency to 
find one-edge grammars from large, connected 
graphs is due to the fact that one-edge grammars 
score high because they can compress the graph well.  
 
Grammars inferred by the approach developed by 
Jonyer et al. [Jonyer04] were limited to chains of 
isomorphic subgraphs which must be connected by a 
single edge. Since the connecting edge can be 
included in the production’s subgraph, and 
isomorphic subgraphs will overlap by one vertex, our 
approach can infer Jonyer et al.’s  class of grammars. 
As we noticed in our experiment shown in Figure 12 
when the subgraphs overlap by more than one node, 
our algorithm still looks for overlap on only one node 
and infers a grammar which cannot generate the input 
graph. Therefore one extension to the algorithm 
would be a modification which would allow for 
overlap larger than a single node.  
 
The evaluation method can be modified to avoid one-
edge grammar productions in graphs with one label. 
We are exploring other domains where data can be 
represented as a graph composed from smaller 
structures to further test our inference system and 
examine it as a data mining tool for these domains. 
We are continuing our research in graph grammar 
inference to develop methods allowing for discovery 
of more powerful classes of graph grammars than 
discussed in this paper. 
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