
Learning from Examples

in a Single Graph

Joseph T. Potts, Diane J. Cook, and Lawrence B. Holder

University of Texas at Arlington
416 Yates

Arlington, TX 76019 USA
{potts, cook, holder}@cse.uta.edu

Abstract
Of all of the existing learning systems, few are capable of
accepting graphs as input. Yet graphs are a powerful data
representation capable of efficiently conveying
relationships in the data to those who use them, both
machine and human. But even among the systems capable
of reading graph-based data, most require the examples for
each class to be in disjoint graphs. We introduce a learner
that can use a single, connected graph with the training
examples embedded therein. We propose a new metric to
determine the value of a classification. Finally we present
the results of a learning experiment on sea surface
temperature data.

Introduction

Learning systems capable of utilizing graph-based data have
typically required disjoint graphs for the training examples.
In some cases training examples may be individual disjoint
graphs, each of which is an example of one of n classes.
There might even be only one graph for each class. In
either case, the goal is to learn one or more concepts which
allow the user to determine to which class new (previously
unseen) graphs belong.

If training examples are actually contained in a single
graph, one is very likely going to encounter some problems
in preparing the data for input into systems such as those
above. If one has to have individual graphs for each
example, then one can excise each example along with
some amount of surrounding data to create a disconnected
graph containing that example. If the examples are close
enough to each other in the original graph, then this
surrounding data may overlap with the surrounding data of
another example or even the example itself. This will result
in some data appearing in more than one example graph.
There is also some risk of taking the wrong amount of
surrounding data, either too large a region around the
example causing extra data to be handled, or too small a

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

region resulting in the loss of potentially vital information.
And of course it may be impossible to determine the
“shape” of the area that should be excised. Since processing
graph-based data is very resource intensive, any redundant
information can have a drastic effect on performance.

Our goal was to develop a learner that allowed the
original graph, containing all the training examples for all
classes to be input with a minimum of preprocessing and a
minimum of added or redundant information. We
developed a program that achieved this goal by starting
with some of the core routines of the Subdue graph-based
relational learning system (Cook and Holder 1994; 2000).
We then modified the search strategy, added new
evaluation criteria, and added the capability to apply the
learned concepts to novel graphs to measure their
effectiveness.

The result is that the only preprocessing required on the
graph is to add a vertex for each example identifying its
class, and adding edges to connect those vertices to each
vertex of the examples. The program then reads the
augmented graph and produces a series of substructures
which can be used to determine the class of marked
examples in a novel graph.

We will first provide some background information on
Subdue. Then we will discuss our evaluation metric and
other extensions that resulted in Subdue-EC, the embedded
classification version of Subdue, designed to learn
classifying substructures from training examples contained
in a single, connected graph. We then show the system
learning to determine whether any point on a global grid
will experience a decrease, an increase or no change in its
sea surface temperature over one month. This will be
followed by conclusions and ideas for future work.

Subdue

Subdue was originally written to discover interesting
patterns in structural data. Subdue is not restricted to any
domain as long as the data can be represented by a graph.
The graph contains vertices and edges, both of which have
labels. The edges may be directed or undirected. Vertices
may have multiple edges and self edges (a vertex connected

480 / FLAIRS 2005

to itself). There is no restriction on the number of graphs
that may be input at one time, though they will be processed
as if there were only one.

In accordance with the MDL principle (Rissanen 1989),
the substructure that Subdue deems to be the most
“interesting” is the one that results in a small descriptive
length when it is used to compress the graph. This concept
comes from information theory. If we wish to transmit the
graph to an agent, then we must somehow encode it in a
binary string. The length of that string in bits is the
Descriptive Length or DL of the graph. Now if we find a
substructure that appears frequently enough in the graph
and if it is small enough, then we may be able to encode the
graph in a shorter string. First we substitute a new, special
vertex for each occurrence of the substructure giving us a
new, smaller graph. Then we encode both the new graph
and the substructure and send them to the agent. The agent
substitutes the substructure back into the graph for every
occurrence of the special vertex and will then have a correct
and complete copy of the original graph. If the DL of the
new graph plus the DL of the substructure is less than the
DL of the original graph, then we have reduced the message
length required to transmit the graph. We have, in effect,
compressed the graph. The substructure that compresses
the graph the most gives us the Minimum Description
Length or MDL. The amount of compression of a graph G
by a subgraph S is calculated as:

)(

)|()(

GDL

SGDLSDL
nCompressio

where DL(G) is the description length of the input graph,
DL(S) is the description length of the subgraph and
DL(G|S) is the description length of the input graph
compressed by the subgraph. For the sake of convention,
the search algorithm tries to maximize the reciprocal of the
compression referred to as the value of the substructure.

The initial state of the search is the set of single vertex
substructures composed of a single vertex subgraph for each
unique vertex label along with all of its instances. Each
substructure in the current state is extended by one edge.
This may mean a new vertex is also added or it may simply
be the addition of an edge connecting two vertices already
in the substructure. The new substructure is then evaluated
and the value used to insert the substructure in a value
ordered queue of a limited size specified by the user (beam
width). After all substructures in the current state have been
extended and evaluated, the queue of extended
substructures becomes the current state. The process is
repeated with the current state until there are no more
substructures to extend or the total number of substructures
evaluated reaches a user-specified limit (limit).

If the user has requested multiple iterations, then all
instances of the best substructure are replaced by a vertex
labeled “Sn” and the entire process is repeated with this
new graph as input. It is possible to continue discovering
substructures and using them to compress the graph until

the graph consists of a single vertex. The discovered
substructures form a hierarchical description of the
structural data in the original graph. Each substructure can
be described in terms of substructures discovered earlier in
the process

Figure 1 shows a simple input graph. Subdue discovers
three instances of the substructure A->B. Figure 2 shows
the graph after being compressed by the substitution of
vertex S1 for each instance of substructure A->B.

Subdue initially operated only in unsupervised discovery
mode as described above. However, through a series of
extensions such as Subdue-CL (Gonzales, Holder, and
Cook 2001) capability to perform concept learning was
added. For this application, all graphs that are positive
examples are kept distinct from the graphs that are
negative examples. The MDL principle is still used
although the goal is to compress the positive graphs and
NOT compress the negative graphs. The substructure
which does this best represents the concept that
distinguishes the positive graph s from the negative ones.
It was found, though, that for some data a structure might
provide a high degree of compression for one or a few of
the positive graphs but not all. This situation would
mislead the search for a discriminating concept. As a
result, a second evaluation method was added based on set
covering. With this evaluation, the best structure occurs at
least once in a large number of the positive graphs and
occurs rarely or not at all in the negative graphs. Other
graph-based learners use different algorithms, but like
Subdue-CL, most other concept learners were still not able

Figure 2. Graph after compression.

D

A

C

A A

AA

A

B

B

B

C

Figure 1. A simple graph.

D

S1

C AA

A

S1

S1

C

481 / FLAIRS 2005

to accommodate a single input graph containing all of the
examples.

Subdue-EC

Although Subdue-CL used compression as a metric, if one
is performing inductive learning on a single graph
containing both positive and negative examples,
compression of the input graph provides no guidance in
selecting discriminating substructures. Set covering was
initially considered for the new task, but did not have the
same appeal as a new approach inspired by a discussion on
Minimum Descriptive Length in (Mitchell 1997). To allow
the MDL principle to guide us in classification, we have to
look not at the graph, but at the classification itself. That is,
we assume that our receiving agent already has the graph
and all of the examples it contains. What we need to encode
and send is the classification of those examples. The
straightforward way to do that is simply to send the class
number for each example. Since the examples are in the
same order in the agent’s copy of the graph as they are in
ours, we can just send the class number for example, 1 to n
and the agent will be able to classify each example in its
copy of the graph. It takes nlog2 (number of classes) bits to
send this information.

An alternative to just telling the agent what the class is
for each example, is to provide one or more substructures
each with an associated class. If an instance of the
substructure contains one or more vertices of the example,
then the class associated with that substructure is assigned
to that example. Of course, it is possible that this may
misclassify some examples or leave some of them
unclassified. In this case we must inform the agent of the
correct classification for those examples. Thus the
descriptive length of our alternative message is the sum of
the descriptive lengths of each substructure plus a class
number for each substructure plus all of the exceptions for
each class. Now we can define classification compression
as the quotient of the DL of the “naïve” classification
message and the substructure based classification message :

Classification Compression =

(ne*log2 nc) / (DLS+ns*log2 nc+(nm+nu)log2
ne)

 where ne number of examples

 nc number of classes

 ns number of substructures

 nm number of examples misclassified

 nu number of examples unclassified

The reciprocal of this number as before will be referred to
as value. We will chose a set of substructures which
maximize value.

Now that we have a metric, the other issue is identifying
the examples and their classes. This is accomplished by the

addition of a vertex for each example labeled with the class
name for that example. This additional vertex is connected
to each vertex of its example by an edge. We do not need to
mark the edges of the example since Subdue-EC will
include them in the classifying substructure if they improve
the value of the substructure. To increase efficiency in the
search algorithm, the labels on these class vertices are
replaced as the graph is read by the label “_EXAMPLE”.
This means that the initial state is much, much smaller than
in traditional Subdue searches. In fact, there is only one
substructure in that initial state. This “focuses” the search
immediately on the right places in the graph. In addition, the
search algorithm is modified so that Subdue-EC never adds
an “_EXAMPLE” node during extension.

Figure 3. A graph containing vertices from two classes.

Figure 4. Input graph augmented with class vertices.

When the example in figure 3 is processed by Subdue-
EC,the following five classifying substructures are
discovered:

D negative
B>A>C positive
C negative
B>A>B positive
B is negative

D

A

C

A A

AA

A

B

B

B

C

D

A

C

A A

AA

A

B

B

B

C

P

P

P

N
N

N

482 / FLAIRS 2005

Two things should be noted. First, the order in which the
classifying substructures are discovered is the order in
which they must be applied. If we searched a novel graph
for the last substructure first, we would classify all B
vertices as negative. This would clearly be incorrect.
Instead, for each example marked in the novel graph, we
must work our way down through the sequence of
classifying substructures trying to find an instance of that
substructure which contains a vertex of the target example.
The second thing to note is that each substructure has one
vertex underlined. This designates where the example
vertex occurs in the substructure. Thus, if we applied this
sequence of substructures to a new graph, Y>B>A>B>X,
in order to classify the two vertices labeled B, B>A>B
classifies the leftmost B as positive, and B classifies the
rightmost B as negative.

Experimental Results

For the initial test of Subdue-EC on real data, we chose a
simple classification task on a large set of data. We obtained
sea surface temperature (SST) data from NASA (JPL 2000).
This data is averaged over a five day period and placed on a
one degree global grid. The data contains a fill value for
grid points for which the SST is not available such as points
on land or due to missing information.

We first determined for each grid point whether the
temperature INCREASED, DECREASED or stayed the
SAME from January 8, 1990, to February 7, 1990. We then
placed the non-fill temperature values into one of 9 equal
width bins. We created a graph composed of one vertex for
each grid point (labeled “JAN”). Each JAN vertex was
connected to its neighbor on the west by a directed edge
labeled “W” and its neighbor on the north by one labeled
“N”. The westerly edges continued in a circle around the
entire globe. The northerly edges ended at latitude 89.5 N.
The grid would thus look like a mesh cylinder. Each grid
point also was connected to a unique vertex containing its
temperature bin or the fill value by a directed edge labeled
TEMP and to another unique vertex labeled N or S by an
edge labeled HEMI. This value was based on the node’s
latitude. We then created a training graph by randomly
selecting 90% of the nodes to which we attached each
node’s class vertex. This vertex was labeled either
INCREASE, DECREASE or SAME depending on whether
the temperature at that node was higher, lower or
unchanged after one month.

This created a graph of 259,200 vertices and 323,640
edges. We duplicated the original graph, and attached class
vertices to the remaining10% of the grid nodes to create a
novel graph for testing. Ten sets of training/test graphs were
created and tested with the results shown in Table 1.

Figure 3. Representative SST grid node.

The first column of % correct applies to the training data.
The second column is applying the learned sequence of
classifying substructures to the ten percent of the data held
back (6,480 grid points). The accuracy was consistent with
the accuracy of the training data.

Table 1. Ten-fold cross validation.

We also conducted some tests varying Subdue
parameters such as beam size and limit (the number of
substructures extended and evaluated). These tests were
conducted on 100% of the examples. That is, class vertices
were attached to all 64,800 grid points. Surprisingly, the
accuracy did not change a lot even when the number of
substructures decreased substantially. This is due to the
tradeoff in the numerator of classification compression
between substructure size and misclassifications. For this
data adding one more vertex adds about 16 bits to the size
of the substructure. Since there are about 64,000 examples,

N

8

JAN

INCR

N

W

W

N

run # subs secs. % correct

0 106 52822 86.07% 85.31%

1 104 49669 85.81% 85.26%

2 109 76336 85.57% 85.25%

3 100 71679 85.81% 85.32%

4 104 78874 85.66% 85.69%

5 111 80388 85.84% 86.22%

6 108 73174 85.84% 85.00%

7 112 77236 85.81% 85.39%

8 99 75392 85.64% 84.57%

9 108 80497 85.76% 84.10%

Min 99 49669 85.57% 84.10%

Max 112 80497 86.07% 86.22%

Avg. 106.1 71607 85.78% 85.21%

483 / FLAIRS 2005

the penalty for one misclassification is about 16 bits (that
is how many bits it takes to tell the sender the example
number of the misclassified example. Thus eliminating two
misclassifications more than pays for adding one vertex to
the substructure.

This tends to drive substructure growth larger and larger
until the algorithm is terminated by the limit parameter.
These larger substructures have fewer misclassifications,
but they also leave more examples unclassified. However,
the unclassified examples are then classified on a
subsequent iteration. So there are more substructures and
larger substructures as limit is increased, but the accuracy
does not get that much better (see Table 2).

The next test was to train on 100% of the January 1990
data and then apply that learned sequence of classifying
substructures to the 1991 data. That is, create a similar
graph for the same dates in the following year January 8,
1991 to February 7, 1991, determine the correct
classification for all grid points, and apply the classifying
substructures learned from the 1990 graph to this new,
previously unseen 1991 graph. As shown in Table 2, using
the classifying substructures learned from the
January/February 1990 graph, we were 81.98% accurate in
predicting the SST direction of change for
January/February 1991, one year later. Table 2 shows how
we classified each of the 64,800 grid points.

Table 1. Classifying following year.

The learned substructures are what one might intuitively
expect. The first in the sequence addresses the large
number of SAME examples. These are primarily land
which is still land 30 days later and therefore still has a fill
value for the temperature and is in the SAME class.
Otherwise the Northern hemisphere tends to gets colder in
winter and the Southern hemisphere gets warmer. One of
the more interesting classifying substructures is TempBin 0
classifies as SAME. Does this mean it’s just too cold to get
warm? And Southern hemisphere grid points North of
nodes with TempBin 6 are classified as DECREASE.
These may be right on the equator and therefore starting to
cool off as winter drags on and they get less sun. Finally, it
should be noted that none of the tests ever have any
unclassified. On this data there always seems to be value to
a catchall classification substructure at the end of the

sequence. This data has enough correct classifications in
the catchall to “pay” for its misclassifications.

As a final test, we created a third graph from the
July/August 1990 SST data. We would NOT expect our
classifying substructures to perform well on this data since
it is for a time period six months later when the Northern
hemisphere is heating up and the Southern, cooling. Table
3 shows that indeed, we did very poorly, correctly
classifying only 46.69% of the grid points, most of which
were in the SAME class.

Although we have not yet done so, we are confident
Subdue-EC can also learn subsequences for classifying the
July/August temperature shift as well as it learned the
January/February one.

Table 2. Classifying following summer.

Conclusions

The learner we have developed accepts a single, connected
graph containing all examples for all classes. This learner
performed reasonably well on real world data in the Earth
Science domain.

 The approach is effective for problems with more than just
two classes. Our successful classification of the SST data
demonstrates its use on a three class problem.

 Our representation of the class labels in the graph is
concise and quite amenable to randomized sampling
without disturbing the original structure of the complete
input graph.

The heuristic used in the new learner, classification
compression, is somewhat sensitive to graph size and
number of examples.

Future Directions

Subdue-EC needs to be tested on data from additional
domains. We are particularly interested in how it might
perform on social networks in a terrorist detection domain.

Actual Called
Same

Called
Decr.

Called Incr.
Total

Same 25473 1076 1079 27628

Decr 1474 9737 2487 13698

Incr 1633 3925 17916 23474

Total 28580 14738 21482 64800

Called Right: 53126 81.98%

Actual Called
Same

Called
Decr.

Called Incr.
Total

Same 22759 547 2730 26036

Decr 1753 3007 17532 22292

Incr 3316 10611 2545 16472

Total 27826 14165 22807 64800

Called Right: 28311 43.69%

484 / FLAIRS 2005

 The classification compression heuristic may need some
tuning to reduce its sensitivity to small numbers of
examples. If other types of data show this same tendency to
make more and more substructures but gain little in
accuracy or change in classification compression, then the
calculation may need to be done slightly differently.

Finally, we believe that this approach to learning can be
used for graphs representing temporal data. The major issue
here is that if all examples are in a single graph, the learner
must be prevented from looking forward in time. into the
future as it were.

Acknowledgements

This work was supported by NASA Headquarters under
the Earth Systems Science Fellowship Grant NGT5 and by
NSF grant IIS-0097517.

References

Cook, D. J., and Holder, L. B. 2000. Graph-Based Data
Mining. IEEE Intelligent Systems, 15(2):32-41.

Cook, D. J., and Holder, L. B., Substructure Discovery
Using Minimum Descriptive Length and Background
Knowledge. Journal of Artificial Intelligence Research
1:231-255, 1994

Gonzalez, J, Holder, L. B., and Cook, D. J. 2001. Graph-
Based Concept Learning. In Proceedings of the Florida
Artificial Intelligence Research Symposium,377-381.

Jonyer, Holder, L. B., and Cook, D. J. 2000. Graph-Based
Hierarchical Conceptual Clustering. In Proceedings of the
Florida AI Research Symposium,91—95.

JPL, Physical Oceanography DACC, WOCE Global Data,
V2.0,Satellite Data, Sea Surface Temperature, July 2000

Mitchell, Tom M., Machine Intelligence, McGraw-Hill,
New York, New York, 1997
Rissanen, J. 1989. Stochastic Complexity in Statistical
Inquiry. World Scientific Publishing Company.

485 / FLAIRS 2005

