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Abstract
Of all of the existing learning systems, few are capable of 
accepting graphs as input. Yet graphs are a powerful data 
representation capable of efficiently conveying 
relationships in the data to those who use them, both 
machine and human. But even among the systems capable 
of reading graph-based data, most require the examples for 
each class to be in disjoint graphs.  We introduce a learner 
that can use a single, connected graph with the training 
examples embedded therein. We propose a new metric to 
determine the value of a classification. Finally we present 
the results of a learning experiment on sea surface 
temperature data. 

Introduction

Learning systems capable of utilizing graph-based data have 
typically required disjoint graphs for the training examples. 
In some cases training examples may be individual disjoint 
graphs, each of which is an example of one of n classes. 
There might even be only one graph for each class.  In 
either case, the goal is to learn one or more concepts which 
allow the user to determine to which class new (previously 
unseen) graphs belong. 

If training examples are actually contained in a single 
graph, one is very likely going to encounter some problems 
in preparing the data for input into systems such as those 
above. If one has to have individual graphs for each 
example, then one can excise each example along with 
some amount of surrounding data to create a disconnected 
graph containing that example. If the examples are close 
enough to each other in the original graph, then this 
surrounding data may overlap with the surrounding data of 
another example or even the example itself. This will result 
in some data appearing in more than one example graph.  
There is also some risk of taking the wrong amount of 
surrounding data, either too large a region around the 
example causing extra data to be handled, or too small a 
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region resulting in the loss of potentially vital information.  
And of course it may be impossible to determine the 
“shape” of the area that should be excised. Since processing 
graph-based data is very resource intensive, any redundant 
information can have a drastic effect on performance. 

Our goal was to develop a learner that allowed the 
original graph, containing all the training examples for all 
classes to be input with a minimum of preprocessing and a 
minimum of added or redundant information. We 
developed a program that achieved this goal by starting 
with some of the core routines of the Subdue graph-based 
relational learning system (Cook and Holder 1994; 2000). 
We then modified the search strategy, added new 
evaluation criteria, and added the capability to apply the 
learned concepts to novel graphs to measure their 
effectiveness.

The result is that the only preprocessing required on the 
graph is to add a vertex for each example identifying its 
class, and adding edges to connect those vertices to each 
vertex of the examples. The program then reads the 
augmented graph and produces a series of substructures 
which can be used to determine the class of marked 
examples in a novel graph. 

We will first provide some background information on 
Subdue. Then we will discuss our evaluation metric and 
other extensions that resulted in Subdue-EC, the embedded 
classification version of Subdue, designed to learn 
classifying substructures from training examples contained 
in a single, connected graph. We then show the system 
learning to determine whether any point on a global grid 
will experience a decrease, an increase or no change in its 
sea surface temperature over one month. This will be 
followed by conclusions and ideas for future work.

Subdue

Subdue was originally written to discover interesting 
patterns in structural data. Subdue is not restricted to any 
domain as long as the data can be represented by a graph. 
The graph contains vertices and edges, both of which have 
labels. The edges may be directed or undirected. Vertices 
may have multiple edges and self edges (a vertex connected 
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to itself). There is no restriction on the number of graphs 
that may be input at one time, though they will be processed 
as if there were only one.

In accordance with the MDL principle (Rissanen 1989), 
the substructure that Subdue deems to be the most 
“interesting” is the one that results in a small descriptive 
length when it is used to compress the graph. This concept 
comes from information theory. If we wish to transmit the 
graph to an agent, then we must somehow encode it in a 
binary string.  The length of that string in bits is the 
Descriptive Length or DL of the graph. Now if we find a 
substructure that appears frequently enough in the graph 
and if it is small enough, then we may be able to encode the 
graph in a shorter string. First we substitute a new, special 
vertex for each occurrence of the substructure giving us a 
new, smaller graph. Then we encode both the new graph 
and the substructure and send them to the agent. The agent 
substitutes the substructure back into the graph for every 
occurrence of the special vertex and will then have a correct 
and complete copy of the original graph. If the DL of the 
new graph plus the DL of the substructure is less than the 
DL of the original graph, then we have reduced the message 
length required to transmit the graph. We have, in effect, 
compressed the graph.  The substructure that compresses 
the graph the most gives us the Minimum Description 
Length or MDL. The amount of compression of a graph G 
by a subgraph S is calculated as: 
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where DL(G) is the description length of the input graph, 
DL(S) is the description length of the subgraph and 
DL(G|S) is the description length of the input graph 
compressed by the subgraph. For the sake of convention, 
the search algorithm tries to maximize the reciprocal of the 
compression referred to as the value of the substructure. 

The initial state of the search is the set of single vertex 
substructures composed of a single vertex subgraph for each 
unique vertex label along with all of its instances. Each 
substructure in the current state is extended by one edge. 
This may mean a new vertex is also added or it may simply 
be the addition of an edge connecting two vertices already 
in the substructure. The new substructure is then evaluated 
and the value used to insert the substructure in a value 
ordered queue of a limited size specified by the user (beam 
width). After all substructures in the current state have been 
extended and evaluated, the queue of extended 
substructures becomes the current state. The process is 
repeated with the current state until there are no more 
substructures to extend or the total number of substructures 
evaluated reaches a user-specified limit (limit). 

If the user has requested multiple iterations, then all 
instances of the best substructure are replaced by a vertex 
labeled “Sn” and the entire process is repeated with this 
new graph as input. It is possible to continue discovering 
substructures and using them to compress the graph until 

the graph consists of a single vertex. The discovered 
substructures form a hierarchical description of the 
structural data in the original graph. Each substructure can 
be described in terms of substructures discovered earlier in 
the process 

Figure 1 shows a simple input graph. Subdue discovers 
three instances of the substructure A->B. Figure 2 shows 
the graph after being compressed by the substitution of 
vertex S1 for each instance of substructure A->B. 

Subdue initially operated only in unsupervised discovery 
mode as described above. However, through a series of 
extensions such as Subdue-CL (Gonzales, Holder, and 
Cook 2001) capability to perform concept learning was 
added. For this application, all graphs that are positive 
examples are kept distinct from the graphs that are 
negative examples. The MDL principle is still used 
although the goal is to compress the positive graphs and 
NOT compress the negative graphs. The substructure 
which does this best  represents the concept that 
distinguishes the positive graph s from the negative ones. 
It was found, though, that for some data a structure might 
provide a high degree of compression for one or a few of 
the positive graphs but not all. This situation would 
mislead the search for a discriminating concept. As a 
result, a second evaluation method was added based on set 
covering.  With this evaluation, the best structure occurs at 
least once in a large number of the positive graphs and 
occurs rarely or not at all in the negative graphs. Other 
graph-based learners use different algorithms, but like 
Subdue-CL, most other concept learners were still not able 

Figure 2. Graph after compression.
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to accommodate a single input graph containing all of the 
examples. 

Subdue-EC

Although Subdue-CL used compression as a metric, if one 
is performing inductive learning on a single graph 
containing both positive and negative examples, 
compression of the input graph provides no guidance in 
selecting discriminating substructures. Set covering was 
initially considered for the new task, but did not have the 
same appeal as a new approach inspired by a discussion on 
Minimum Descriptive Length in (Mitchell 1997). To allow 
the MDL principle to guide us in classification, we have to 
look not at the graph, but at the classification itself. That is, 
we assume that our receiving agent already has the graph 
and all of the examples it contains. What we need to encode 
and send is the classification of those examples.  The 
straightforward way to do that is simply to send the class 
number for each example. Since the examples are in the 
same order in the agent’s copy of the graph as they are in 
ours, we can just send the class number for example, 1 to n 
and the agent will be able to classify each example in its 
copy of the graph. It takes nlog2 (number of classes) bits to 
send this information. 

An alternative to just telling the agent what the class is 
for each example, is to provide one or more substructures 
each with an associated class. If an instance of the 
substructure contains one or more vertices of the example, 
then the class associated with that substructure is assigned 
to that example. Of course, it is possible that this may 
misclassify some examples or leave some of them 
unclassified. In this case we must inform the agent of the 
correct classification for those examples. Thus the 
descriptive length of our alternative message is the sum of 
the descriptive lengths of each substructure plus a class 
number for each substructure plus all of the exceptions for 
each class. Now we can define  classification compression
as the quotient of the DL of the “naïve” classification 
message and the substructure based classification message : 

Classification Compression =

(ne*log2  nc) / ( DLS+ns*log2  nc+(nm+nu)log2
ne)

 where  ne number of examples 

     nc number of classes 

   ns number of substructures 

     nm number of examples misclassified 

     nu number of examples unclassified 

The reciprocal of this number as before will be referred to 
as value. We will chose a set of substructures which 
maximize value. 

Now that we have a metric, the other issue is identifying 
the examples and their classes. This is accomplished by the 

addition of a vertex for each example labeled with the class 
name for that example. This additional vertex is connected 
to each vertex of its example by an edge. We do not need to 
mark the edges of the example since Subdue-EC will 
include them in the classifying substructure if they improve 
the value of the substructure. To increase efficiency in the 
search algorithm, the labels on these class vertices are 
replaced as the graph is read  by the label “_EXAMPLE”. 
This means that the initial state is much, much smaller than 
in traditional Subdue searches. In fact, there is only one 
substructure in that initial state. This “focuses” the search 
immediately on the right places in the graph. In addition, the 
search algorithm is modified so that Subdue-EC never adds 
an “_EXAMPLE” node during extension. 

Figure 3.  A graph containing vertices from two classes. 

Figure 4. Input graph augmented with class vertices. 

When the example in figure 3 is processed by Subdue-
EC,the following five classifying substructures are 
discovered:
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Two things should be noted. First, the order in which the 
classifying substructures are discovered is the order in 
which they must be applied. If we searched a novel graph 
for the last substructure first, we would classify all B 
vertices as negative. This would clearly be incorrect. 
Instead, for each example marked in the novel graph, we 
must work our way down through the sequence of 
classifying substructures trying to find an instance of that 
substructure which contains a vertex of the target example.  
The second thing to note is that each substructure has one 
vertex underlined. This designates where the example 
vertex occurs in the substructure. Thus, if we applied this 
sequence of substructures to a new graph, Y>B>A>B>X, 
in order to classify the two vertices labeled B, B>A>B 
classifies the leftmost B as positive, and B classifies the 
rightmost B as negative. 

Experimental Results 

For the initial test of Subdue-EC on real data, we chose a 
simple classification task on a large set of data. We obtained 
sea surface temperature (SST) data from NASA (JPL 2000). 
This data is averaged over a five day period and placed on a 
one degree global grid. The data contains a fill value for 
grid points for which the SST is not available such as points 
on land or due to missing information. 

We first determined for each grid point whether the 
temperature INCREASED, DECREASED or stayed the 
SAME from January 8, 1990, to February 7, 1990. We then 
placed the non-fill temperature values into one of 9 equal 
width bins. We created a graph composed of one vertex for 
each grid point (labeled “JAN”). Each JAN vertex was 
connected to its neighbor on the west by a directed edge 
labeled “W” and its neighbor on the north by one labeled 
“N”. The westerly edges continued in a circle around the 
entire globe. The northerly edges ended at latitude 89.5 N. 
The grid would thus look like a mesh cylinder. Each grid 
point also was connected to a unique vertex containing its 
temperature bin or the fill value by a directed edge labeled 
TEMP and to another unique vertex labeled N or S by an 
edge labeled HEMI. This value was based on the node’s 
latitude. We then created a training graph by randomly 
selecting 90% of the nodes to which we attached each 
node’s class vertex. This vertex was labeled either 
INCREASE, DECREASE or SAME depending on whether 
the temperature at that node was higher, lower or 
unchanged after one month. 

This created a graph of 259,200 vertices and 323,640 
edges. We duplicated the original graph, and attached class 
vertices to the remaining10% of the grid nodes to create a 
novel graph for testing. Ten sets of training/test graphs were 
created and tested with the results shown in Table 1. 

Figure 3. Representative SST grid node. 

The first column of % correct applies to the training data. 
The second column is applying the learned sequence of 
classifying substructures to the ten percent of the data held 
back (6,480 grid points). The accuracy was consistent with 
the accuracy of the training data. 

Table 1.  Ten-fold cross validation. 

We also conducted some tests varying Subdue 
parameters such as beam size and limit (the number of 
substructures extended and evaluated). These tests were 
conducted on 100% of the examples. That is, class vertices 
were attached to all 64,800 grid points. Surprisingly, the 
accuracy did not change a lot even when the number of 
substructures decreased substantially. This is due to the 
tradeoff in the numerator of classification compression 
between substructure size and misclassifications. For this 
data adding one more vertex adds about 16 bits to the size 
of the substructure. Since there are about 64,000 examples, 
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run # subs secs. % correct 

0 106 52822 86.07% 85.31%

1 104 49669 85.81% 85.26%

2 109 76336 85.57% 85.25%

3 100 71679 85.81% 85.32%

4 104 78874 85.66% 85.69%

5 111 80388 85.84% 86.22%

6 108 73174 85.84% 85.00%

7 112 77236 85.81% 85.39%

8 99 75392 85.64% 84.57%

9 108 80497 85.76% 84.10%

Min 99 49669 85.57% 84.10%

Max 112 80497 86.07% 86.22%

Avg. 106.1 71607 85.78% 85.21%
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the penalty for one misclassification is about 16 bits (that 
is how many bits it takes to tell the sender the example 
number of the misclassified example. Thus eliminating two 
misclassifications more than pays for adding one vertex to 
the substructure. 

This tends to drive substructure growth larger and larger 
until the algorithm is terminated by the limit parameter. 
These larger substructures have fewer misclassifications, 
but they also leave more examples unclassified. However, 
the unclassified examples are then classified on a 
subsequent iteration. So there are more substructures and 
larger substructures as limit is increased, but the accuracy 
does not get that much better (see Table 2). 

The next test was to train on 100% of the January 1990 
data and then apply that learned sequence of classifying 
substructures to the 1991 data. That is, create a similar 
graph for the same dates in the following year January 8, 
1991 to February 7, 1991, determine the correct 
classification for all grid points, and apply the classifying 
substructures learned from the 1990 graph to this new, 
previously unseen 1991 graph. As shown in Table 2, using 
the classifying substructures learned from the 
January/February 1990 graph, we were 81.98% accurate in 
predicting the SST direction of change for 
January/February 1991, one year later. Table 2 shows how 
we classified each of the 64,800 grid points.

Table 1. Classifying following year. 

The learned substructures are what one might intuitively 
expect. The first in the sequence addresses the large 
number of SAME examples. These are primarily land 
which is still land 30 days later and therefore still has a fill 
value for the temperature and is in the SAME class. 
Otherwise the Northern hemisphere tends to gets colder in 
winter and the Southern hemisphere gets warmer. One of 
the more interesting classifying substructures is TempBin 0 
classifies as SAME. Does this mean it’s just too cold to get 
warm? And Southern hemisphere grid points North of 
nodes with TempBin 6 are classified as DECREASE. 
These may be right on the equator and therefore starting to 
cool off as winter drags on and they get less sun. Finally, it 
should be noted that none of the tests ever have any 
unclassified. On this data there always seems to be value to 
a catchall classification substructure at the end of the 

sequence. This data has enough correct classifications in 
the catchall  to “pay” for its misclassifications. 

As a final test, we created a third graph from the 
July/August 1990 SST data. We would NOT expect our 
classifying substructures to perform well on this data since 
it is for a time period six months later when the Northern 
hemisphere is heating up and the Southern, cooling. Table 
3 shows that indeed, we did very poorly, correctly 
classifying only 46.69% of the grid points, most of which 
were in the SAME class.

Although we have not yet done so, we are confident 
Subdue-EC can also learn subsequences for classifying the 
July/August temperature shift as well as it learned the 
January/February one.

Table 2. Classifying following summer.

Conclusions

The learner we have developed accepts a single, connected 
graph containing all examples for all classes. This learner 
performed reasonably well on real world data in the Earth 
Science domain. 

  The approach is effective for problems with more than just 
two classes. Our successful classification of the SST data 
demonstrates its use on a three class problem. 

  Our representation of the class labels in the graph is 
concise and quite amenable to randomized sampling 
without disturbing the original structure of the complete 
input graph. 

The heuristic used in the new learner, classification 
compression, is somewhat sensitive to graph size and 
number of examples.  

Future Directions 

Subdue-EC needs to be tested on data from additional 
domains. We are particularly interested in how it might 
perform on social networks in a terrorist detection domain. 

Actual Called 
Same 

Called
Decr.

Called             Incr.
Total

Same 25473 1076 1079 27628 

Decr 1474 9737 2487 13698 

Incr 1633 3925 17916 23474 

Total 28580 14738 21482 64800

     

Called Right: 53126 81.98%

Actual Called
Same

Called
Decr.

Called             Incr.
Total

Same 22759 547 2730 26036 

Decr 1753 3007 17532 22292 

Incr 3316 10611 2545 16472 

Total 27826 14165 22807 64800

   

Called Right: 28311 43.69% 
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  The classification compression heuristic may need some 
tuning to reduce its sensitivity to small numbers of 
examples. If other types of data show this same tendency to 
make more and more substructures but gain little in 
accuracy or change in classification compression, then the 
calculation may need to be done slightly differently. 

Finally, we believe that this approach to learning can be 
used for graphs representing temporal data. The major issue 
here is that if all examples are in a single graph, the learner 
must be prevented from looking forward in time. into the 
future as it were. 
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