
Structural Web Search Engine∗

Arash Rakhshan and Lawrence B. Holder and Diane J. Cook
University of Texas at Arlington

Department of Computer Science and Engineering
Box 19015, Arlington, TX 76019

E-mail: {rakhshan, holder, cook}@cse.uta.edu

Abstract

We present a new approach in web search engines. The
web creates new challenges for information retrieval.
The vast improvement in information access is not the
only advantage resulting from the keyword search. Ad-
ditionally, much potential exists for analyzing interests
and relationships within the structure of the web. The
creation of a hyperlink by the author of a web page
explicitly represents a relationship between the source
and destination pages which demonstrates the hyperlink
structure between web pages. Our web search engine
searches not only for the keywords in the web pages, but
also for the hyperlink structure between them. Compar-
ing the results of structural web search versus keyword-
based search indicates an improved ability to access de-
sired information.

Introduction
Structural web search is the process of searching the web
for a specific hyperlink structure combined with textual con-
tent. Sometimes, it is not sufficient to apply purely text-
based methods to find a large number of potentially relevant
pages. People are likely to surf the web using its graph struc-
ture. The current web search engines can be used in order
to search for some keywords or some combination of them
without forcing any hyperlink structure between web pages.
In other words the result of a particular search engine would
be a number of hits each containing one web page.

In contrast the result of a structural web search engine is
a number of hyperlink graphs, where each node represents
a web page containing certain keywords and edges repre-
sent hyperlinks between web pages. The engine ensures that
these structural hits match the user’s structural query. For
example, Figure 1 shows a simple structural query in which
the user is looking for a web page on ”computer science”
pointing to a web page on ”scholarships”. The result of
structural search for such a query would be the same graph
or hyperlink structure that the user has input except that it
already has the web pages which satisfy not only the pure

∗This work is supported by the National Science Foundation
grant 0097517.
Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

keyword search in a text-based search engine but also the
hyperlink structure between them.

Figure 1: A sample structural query.

In the next section we describe work related to structural
web search. We then discuss the components of our struc-
tural web search engine. Next, we present the results of ex-
periments comparing the results of the structural search to
keyword-based search engines. We conclude with a discus-
sion of the benefits of structural web search and directions
for future research.

Related Work
Much research has been done on approaches to keyword-
based web search, but the hyperlink structure has received
relatively little attention (Chakrabarti et al. 1999). While
many search engines utilize structure to rank pages, the
structure itself is not searched. In the Google search engine,
a significant number of maps have been created of these hy-
perlinks to allow rapid calculation of a web pages’ ”Page
Rank” (Brin & Page 1998). PageRank is an excellent way to
prioritize the results of web keyword searches. Aside from
PageRank and the use of anchor text, Google has several
other features. First, it has location information for all hits,
and so it makes extensive use of proximity in search. Sec-
ond, Google keeps track of some visual presentation details
such as font size of words. Third, full raw HTML of pages
is available in a repository.

Another approach to using hyperlink structure for rank-
ing pages is to identify authoritative pages. The goal is to
compile a list of web resources considered the most authori-
tative for a broad and well-represented topic on the web. At
first these lists were constructed either manually or through
a combination of human and automated effort. The ARC

Computer Science

Scholarships



system (Chakrabarti et al. 1998) for automatically compil-
ing a list of authoritative web resources on any (sufficiently
broad) topic operates fully automatically. This technique is
embodied in the Clever search engine for finding hub and
authority pages. A good hub has many hyperlinks to good
authority pages, while a good authority has many hyperlinks
from good hub pages.

Viewing the hyperlink structure of the web as a graph has
been a strong motivation to improve the result of the search
engines. Combination of the keyword extraction and using
hyperlink structure has been the main idea of the recent re-
search on the web searches like WebSUBDUE (Manocha,
Cook, & Holder 2001).

WebSUBDUE is a tool which retrieves sites correspond-
ing to structures formed by graph-based user queries. Web-
SUBDUE is enhanced with a knowledge discovery system
called SUBDUE (Cook & Holder 2000), that discovers pat-
terns in structural data and performs various types of data
mining on the graph. SUBDUE discovers repetitive patterns,
or subgraphs, in the graph. Since SUBDUE accepts data in
the form of a labeled graph; in WebSUBDUE, the search
query and the WWW are represented as labeled graphs, and
discovered instances are reported as the results of the query.

Data collection in WebSUBDUE is performed using a
web robot which follows links to pages residing on speci-
fied servers. As it traverses a web site, the robot generates
a graph file representing the specified site. Once the URLs
have been crawled, a labeled graph is generated representing
the website. The search engine allows the user to create a
graph for a new domain or search an existing graph. New
web sites can also be incrementally added to an existing
graph. WebSUBDUE invokes SUBDUE to find instances
of the graphical query in the graph of the web site. Web-
SUBDUE reports the graph vertices, edges and correspond-
ing URLs for each discovered instance. SUBDUE’s inexact
graph match algorithm can be used by WebSUBDUE to find
web sites that closely, but not exactly, match the user query.

In our Structural Web Search Engine (SWSE) in order to
search and find the hierarchical structure presented by the
user, no data mining tool is required. So there is no need
for data preparation. SWSE benefits from the fact that the
web has been crawled with the most powerful and trusted
web crawler by keyword based search engines like Google.
SWSE retrieves only the web pages it needs to crawl, that is
the web pages which already have keywords of interest to the
user. It searches for the hyperlink structure posed by the user
between the web pages it retrieves. The web pages do not
have to be in any specific domain. SWSE uses a client-server
approach, and it can be used online like any other keyword-
based search engine. The SWSE’s web-based user-friendly
interface allows the user to draw and edit their query in graph
form.

Structural Web Search
Algorithm 1 shows a high-level overview of the Struc-
tural Web Search Engine (SWSE). SWSE is implemented
in Java and executed as a client-server application on
the web. SWSE is available at the following URL:
http://ailab.uta.edu:8080/SWSE/Interface.html.

The graph editor is a Java applet running on the client
machine. Figure 2 shows the SWSE interface. The whole
query represented as a graph in the client is sent to the server
as an object. A Java program listens for the users’ query on
the server and responds back to the client with the search
result. The search result has the same hyperlink structure as
the query presented by the user except it has the web pages
satisfying not only the keyword search on each node but also
the hyperlink structure between those web pages.

Data : Gq = (V, E) is the query represented as a
graph, where vertices represent pages having
one or more keywords, and edges represent hy-
perlinks.

Result : S = A set of matches to Gq

begin
Gq ←− graph obtained from the graph editor
for each vertex v ∈ V [Gq] do

(Hits(v) ←− Google Hits(keywords(v))
end
for each link e ∈ E[Gq], e : vi −→ vj do

for each hit(vi) ∈ Hits(vi) do
for each hit(vj) ∈ Hits(vj) do

if there is a hyperlink such that
hit(vi) −→ hit(vj) then

Add (hit(vi), hit(vj)) pair to the
linked list located at Matrix(i, j)

end
else

Remove hit(vi) from Hits(vi)
end

end
end

end
Gi ←− a combination of URLs from Matrix
while not all possible combination of URLs have been
checked do

if Gi is isomorphic to Gq then
Add Gi to S

end
Gi ←− another URL combination

end
end

Algorithm 1: SWSE server algorithm.

Once the server obtains the graph, for each node in the
graph, it sends an appropriate query string, including the
keywords in the node, to a search engine. In response, it
receives the HTML pages, including the hits returned by the
keyword-based search engine, e.g., Google. The program
parses the HTML pages and extracts all of the hits.

Now for each node we have a number of URLs, each
of which includes the keywords specified in the node. The
server tries to find those URLs that satisfy the structure im-
posed by the query. In the following sections we describe in
detail the components of the SWSE algorithm.



Figure 2: Screen shot of the graph drawing tool.

Query Presentation
In order to design a structural web search engine we need to
have the query presented as a graph, so the desired hyperlink
structure can be imposed by the user. The nodes in the graph
indicate web pages and the links between the nodes are the
hyperlinks between them. We have developed a prototype
interface where the users can draw their desired graph-based
structure in a user-friendly graph editor and specify the key-
words for each web page by inserting the keywords into the
graph nodes. We assume the links are between two different
nodes (i.e., no self links). This is a reasonable assumption
that reduces the complexity of the algorithm, because if all
nodes in the graph are in the same domain, this means that
the links are for navigational purposes, not for inferring use-
ful information (Kleinberg 1998). Figure 2 shows a screen
shot of a query in the graph drawing tool presented by a user
when accessing the SWSE.

Keyword Hits Extraction
The SWSE needs to find the web pages which satisfy the
keywords provided in each node of the graph query. Any
text-based web search engine can be utilized to crawl the
web for the specified keywords and pull out the keyword
matches. We use Google because of the accuracy of its re-
sults. In order to extract the web pages containing the key-
words, parsing the pages returned by Google was required.
The customized Google search engine was helpful to ease
the parse phase, but there is no way to directly send the query
string to the server and get the result back. We needed a
way to automatically extract the hits. Yahoo’s version of the
Google search engine provides such a facility. The keywords
embedded in nodes of the query are automatically sent to the
text-based Google search engine via the proper query string,
and the results page is parsed to extract the web pages con-
taining the keywords. Based on this approach the user can
put any keyword acceptable by the Google search engine.

This approach limits the result to the number of hits we
can get from Yahoo’s version of the Google search engine,
which is usually less than all the hits the Google search en-
gine can find. We are contented with this number of hits,
because the users usually surf the very first hits returned by




Null ...
(

URL1a, URLna′
)

.

.

.
(

URLik, URLjk′
) .

.

.(
URLnv, URL1v′

)
... Null




Figure 3: Two dimensional array including linked lists of
URL pairs.

a keyword-based search engine, but we do parse and extract
as many hits as the Google search will provide us. With this
approach we can assume that if a user cannot find any re-
sult returned by SWSE, he most likely cannot find any hit
or any relevant hit by using a keyword-based search engine
like Google, even if they surf through all of the hits returned
by the search engine.

Search for Hyperlink Structure
Next, we need to find the specific structure imposed by the
user between the web pages extracted from the keyword-
based search. For example, if there is a link in the query
from a node having ”Computer Science” as its keyword to
another node having ”Scholarships” (see figure 1), we need
to pull out all of the links in the hits retrieved from the first
node, to see if there is such a hyperlink to a hit retrieved
from the second node.

Referring to Algorithm 1, for each link e : vi −→ vj

in the query graph, the server picks the URLs retrieved for
node vi one at a time and extracts the links inside that web
page to see if there is a link between that URL and a URL
retrieved for node vj . If there is no such link, it removes the
URL from node vi, because it does not satisfy the structural
component of the query.

These URL pairs are stored in a two dimensional array
of linked lists (see figure 3). We assign a unique number
to each node in the graph before sending it to the server.
Based on these unique numbers we can put each URL pair
in the right place. If the two dimensional array is consid-
ered as an adjacency matrix of the graph (Matrix), then the
Matrix(i, j) element would be a linked list containing pairs
of URLs (e.g., (URLik, URLjk′)). The first element of the
pair is a web page from the node identified uniquely by the
row number (e.g., kth hit of node i in our example). This
page has a link to the web page located at the second element
of the pair, which belongs to the node identified uniquely by
the column number (e.g., k′th hit of node j in the example).

After we fill this matrix with information obtained by
examining the URLs, we check all possible combinations
of URLs to see if they satisfy all structural constraints of
the query. This step of the algorithm is very efficient, be-
cause we do not have to use a full graph isomorphism test.
The nodes for a particular combination of URLs are already
mapped to the corresponding nodes of the query graph.
Therefore, checking for a match requires only checking that
the edges are consistent.

Ranking the Results
In the current version of the application, all of the results are
being treated the same, that is, there is no ranking involved.



The reason is that the web pages returned by the Google
search engine have the keywords the user is looking for, and
the structure should match the query structure exactly; oth-
erwise, it is not a proper hit for our search. Another reason
is that the user has already fixed the nodes by inserting some
keywords in them, so no graph isomorphism is involved,
and we cannot assume any sort criteria over equally-valid
isomorphic hits. One extension would be to allow inexact
matches to the query graph, which would involve the use
of an inexact graph isomorphism algorithm. The degree of
match can be used to rank the results. Another extension
of this application would be exploiting WordNet (Fellbaum
1998), the electronic lexicon database. We can then rank the
results based on a similarity criteria for the keywords match-
ing the query.

Experimental Results
Since this is the first time a structural search is provided; we
cannot compare the SWSE results with a similar search en-
gine. To evaluate the capabilities of the SWSE, we compare
query results of SWSE with search results generated using
three popular keyword-based search engines: Google, Al-
tavista and Infoseek. Google’s advanced search features in-
clude the use of link structure of the web to calculate a qual-
ity ranking for each web page and utilize them to improve
search results. This provides a valuable point of comparison
for the results discovered by SWSE.

As a test query, suppose we are looking for specific in-
formation about “Alfred Nobel”. He focused on the devel-
opment of chemical inventions, including such materials as
synthetic rubber, synthetic leather, and artificial silk. He be-
came wealthy and purchased an elegant mansion at Avenue
Malakoff. He established close contact with Victor Hugo
and other writers. Meanwhile his brothers joined in exploit-
ing the oil wells in the Caspian Sea area.

Figure 4: Experimental query 1.

With the goal of finding a set of URLs relating the people
and places described above, we gave SWSE the query shown
in figure 4. The bidirectional arrow indicates the constraint
that links exist in both directions.

The results are summarized in table 1. The first column
of the table shows the keywords inserted in each node. After
running the SWSE on the provided query, the web pages’
URLs which satisfy the keywords and hyperlink structure of

the presented query are provided in the second column of
the table.1 We provided the keywords in the query (“Alfred
Nobel Artificial Silk Victor Hugo Caspian Sea Oil Wells”)
to all of the three keyword-based search engines and no re-
sults were found. In some cases even if we removed some
of the keywords (e.g., “Oil” or “Wells”), still we did not get
any result back or we got some results which were irrelevant
to the topics of interest. For example, when we provided
another query (the same keywords without “Malakoff” and
“Oil Wells”) to the Google search engine, we got 35 hits,
but none of them included any of the URLs satisfying the
structural query. Another experiment we conducted was try-
ing to retrieve the results of keyword-based search engines
for the keywords in each node individually. The results of
this experiment are provided in the table under “Google”,
“Altavista” and “Infoseek” columns. The number represents
the rank of the URL from the second column in the hits re-
turned by the search engine (N/A means the URL was not in
the returned list).

We next considered more common examples demonstrat-
ing the inability of purely keyword-based approaches to find
desire information. Figure 4 shows a possible query from a
user looking for a book by “Dietel” entitled “How to Pro-
gram” that is pointed to by a “chapter” on “JMX” at “Sun”,
i.e., the user wants to be sure the book is recommended by
the Sun company. In our search engine this query results in
a hit relating a Sun Java web page that has a link to a Java
book published by Prentice Hall, which is linked to from the
web page for Dietel. The Google search returns no matches
for the query “sun JMX chapter Deitel How to program”.

Figure 5: Experimental query 2.

Query 3 shown in Figure 6 may represent a student look-
ing for UT campuses and information about visitors and the
library at UTA (UT Arlington). The SWSE returned two
hits to this query, but these hits were not found by Google,
Altavista, or Infoseek using the keyword query “UT UTA
campuses visitors library”. Finally, query 4 in Figure 7 may
represent a student looking at UT campuses and information
for prospective students in three Texas universities. SWSE
returns one hit, which was not found by Google, Altavista,
or Infoseek using the keyword query “UT campuses Austin
Arlington Dallas Prospective students”.

The results of these experiments indicate the ability of the
structural web search engine to more quickly find hits pos-
sessing desired relationships among the topics of interest.

1All of the search hits were retrieved at the time of writing the
paper. There may be slight changes if they are tried at a different
time.

Alfred Nobel

Artificial Silk

Caspian Sea Oil Wells

Victor Hugo Malakoff

Sun JMX Chapter Dietel

How to program



Keyword Satisfying URL Google Altavista Infoseek

Alfred

Nobel
http://nobel.se/nobel/alfred-nobel/biographical/index.html 3 11 15

Artificial

Silk
http://nobel.se/nobel/alfred-nobel/biographical/sanremo/index.html 493 N/A N/A

Victor Hugo

Malakoff
http://nobel.se/nobel/alfred-nobel/biographical/malakoff/index.html 4 15 32

Caspian Sea

Oil Wells
http://nobel.se/nobel/alfred-nobel/biographical/life-work/russia.html 393 482 N/A

Table 1: Experimental Results.

Figure 6: Experimental query 3.

Figure 7: Experimental query 4.

Conclusions and Future Work
People are likely to surf the web using its link graph (Brin
& Page 1998). Visitors to a web site often ”get lost in
cyberspace” when they lose the context in which they are
browsing and are unsure how to proceed in terms of sat-
isfying their original goal (Nielsen 2000). Structural web
search addresses this problem. We developed a search en-
gine which the user can use to obtain information trails (or
navigation paths) in response to a single query. The SWSE
increases productivity while surfing the web, being more
precise than keyword-based search engines and manually
navigating the web pages.

Much research has focused on using hyperlink informa-
tion in some way to enhance web search (Chakrabarti et
al. 1998). Although these systems use hyperlink structure
to rank retrieved web pages, they do not perform structural
search. In contrast, SWSE performs search to find a struc-
tural query combined with textual content. The experimen-
tal results reveal the advantage of this approach over a tradi-
tional keyword-based search engine when the user is inter-
ested in both the hyperlink structure of the web pages and
the keywords embedded in those web pages. We intend to
further improve the approach by allowing the user add key-
words to the graph edges in order to constrain the anchor
text on hyperlinks, and by using inexact graph matching to

find close matches and rank the matches by their degree of
closeness.

The results described in this paper suggest a number of
research directions impacting the areas of machine learning
and data mining from graph structure. The mining of the
web link structure has intellectual antecedents in the context
of graph-based knowledge discovery and data mining sys-
tems (e.g., SUBDUE (Cook & Holder 2000)). We intend
to collect the structural queries entered by users and apply
graph-based data mining to these queries to find common
patterns and clusters. SUBDUE is a data mining tool that
discovers repetitive substructures in graph-based data. We
intend to input our graphical representation of the queries
into SUBDUE and discover common patterns between the
queries, classify them and find clusters to better understand,
predict and optimize typical users’ queries.

References
Brin, S., and Page, L. 1998. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems 30(1–7):107–117.
Chakrabarti, S.; Dom, B.; Gibson, D.; Kleinberg, J.;
Raghavan, P.; and Rajagopalan, S. 1998. Automatic re-
source list compilation by analyzing hyperlink structure
and associated text. In Proceedings of the 7th International
World Wide Web Conference.
Chakrabarti, S.; Dom, B. E.; Kumar, S. R.; Raghavan, P.;
Rajagopalan, S.; Tomkins, A.; Gibson, D.; and Kleinberg,
J. 1999. Mining the Web’s link structure. Computer
32(8):60–67.
Cook, D. J., and Holder, L. B. 2000. Graph-based data
mining. IEEE Intelligent Systems 15(2):32–41.
Fellbaum, C., ed. 1998. WordNet: An Electronic Lexical
Database. MIT Press.
Kleinberg, J. M. 1998. Authoritative sources in a hyper-
linked environment. In Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, 668–677.
Manocha, N.; Cook, D. J.; and Holder, L. B. 2001. Struc-
tural web search using a graph-based discovery system. In-
telligence 12(1):20–29.
Nielsen, J. 2000. Designing Web Usability. New Riders
Publishing.

UTA

UTA VisitorsUTA Library

UT Campuses

Prospective Students
UT Dallas

Prospective Students
UT Arlington

Prospective Students
UT Austin

UT Campuses


