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Abstract

One of the main challenges for knowledge discovery and 
data mining systems is to scale up their data interpretation 
abilities to discover interesting patterns in large datasets. 
This research addresses the scalability of graph-based 
discovery to monolithic datasets, which are prevalent in 
many real-world domains like bioinformatics, where vast 
amounts of data must be examined to find meaningful 
structures. We introduce a technique by which these 
datasets can be automatically partitioned and mined serially 
with minimal impact on the result quality. We present 
applications of our work in both artificially-generated 
databases and a bioinformatics domain. 

Introduction

Several approaches have been proposed for the analysis 
and discovery of concepts in graphs in the context where 
graphs are used to model datasets. Modeling objects using 
graphs in Subdue [1] allows us to represent arbitrary 
relations among entities and capture the structural 
information. Although the subgraph isomorphism 
procedure needed to deal with these datasets has been 
polynomially constrained within Subdue, the system still 
spends a considerable amount of computation performing 
this task. The utilization of richer and more elaborate data 
representations for improved discovery leads to even larger 
graphs.  The graphs are often so large that they can not fit 
into the dynamic memory of conventional computer 
systems.  Even if the data fits into dynamic memory, the 
amount of memory left for use during execution of the 
discovery algorithm may be insufficient, resulting in an 
increased number of page swaps and ultimately 
performance degradation.   
The goal of this research is to demonstrate that graph-
based knowledge discovery systems can be made scalable 
through the use of sequential discovery over static 
partitions. To accomplish this goal, we have developed a 
serial graph partitioning algorithm to facilitate scaling, 
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both in terms of speedup and memory usage, without the 
need for any distributed or parallel resources. Our work 
describes how substructures discovered locally on data 
partitions can be evaluated to determine the globally-
optimal substructures. This approach requires the data to 
be partitioned. Some information is lost in the form of 
edges that are cut at the partition boundaries. We illustrate 
a method to recover this lost information. A full discussion 
of the experiments that demonstrate scalability of the serial 
partitioned version of Subdue in both artificially-generated 
datasets and a bioinformatics domain can be found in [2]. 
This paper describes a learning model we built to predict 
the amount of memory used during the execution of 
Subdue discovery algorithm for graphs from the protein 
database to illustrate that we can automatically deduce the 
ideal number of partitions into which a graph must be 
divided to ensure that each partition is small enough to fit 
in main memory. 

Overview Of Subdue 

The Subdue system is a structural discovery tool that finds 
substructures in a graph-based representation of structural 
databases. Subdue operates by evaluating potential 
substructures for their ability to compress the entire graph. 
Once a substructure is discovered, the discovery is used to 
simplify the data by replacing instances of the substructure 
with a pointer to the newly discovered substructure 
definition. Repeated iterations of the substructure 
discovery and replacement process construct a hierarchical 
description of the structural data in terms of the discovered 
substructures. This hierarchy provides varying levels of 
interpretation that can be accessed based on the specific 
goals of the data analysis [1].  
Subdue uses the Minimum Description Length Principle 
[3] as the metric by which graph compression is evaluated.  
Subdue is also capable of using an inexact graph match 
parameter to evaluate substructure matches, so that slight 
deviations between two patterns can be considered as the 
same pattern.  
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//Invoke serial Subdue on each partition Gj, which

//returns top b substructures for the jth partition

      for each partition Gj

            localBest[] = Subdue(Gj);

//Store local best substructures for global evaluation

      bestSubstructures[] =

Union(bestSubstructures[],localBest[]);

---------------------------------------------------------------------------

//Reevaluate each locally-best substructure on all

//partitions

      sizeOfGraph = 0;

      for each substructure Si in bestSubstructures[]

             sizeOfSubSi =  MDL(Si);

             sizeCompressedGraph = 0;  //initialize

             for each partition Gj

              //size of graph (in bits) is the sum of sizes of

              //individual partitions

                    sizeCompressedGraph =

            sizeCompressedGraph + MDL(Gj|Si);

                    sizeOfGraph = sizeOfGraph + MDL(Gj);

//Calculate global value of substructure

       subValueSi = sizeOfGraph / (sizeOfSubSi +

sizeCompressedGraph);

       bestSubstructures[i].globalValue = subValueSi;

//Return the top b substructures in bestSubstructures[]

//as the top b global best substructures

Figure 1.  SSP-Subdue Algorithm

Equation 1 illustrates the compression equation used to 
evaluate substructures, where DL(S) is the description 
length of the substructure being evaluated, DL(G|S) is the 
description length of the graph as compressed by the 
substructure, and DL(G) is the description length of the 
original graph. The better a substructure performs, the 
smaller the compression ratio will be. 

Related Work 

Related partitioning and sampling approaches have been 
proposed for scaling other types of data mining algorithms 
to large databases. The partition algorithm [4] makes two 
passes over an input transaction database to generate 
association rules. The database is divided into non-
overlapping partitions and each of the partitions is mined 
individually to generate local frequent itemsets. We adapt 
some of the ideas of the partition algorithm to graph-based 
data mining. However, generally the graph cannot be 
divided into non-overlapping partitions as in the partition 
algorithm for generating association rules. The edges cut at 
the partition boundaries pose a challenge to the quality of 
discovery. The turbo-charging vertical mining algorithm 
[5] incorporates the concept of data compression to boost 
the performance of the mining algorithm. The FP-Tree 
algorithm [6] builds a special tree structure in main 
memory to avoid multiple passes over database. In an 
alternative approach, the sampling algorithm [7] picks a 
random sample to find all association rules that with high 
probability apply to the entire database, and then verifies 
the results with the rest of the database.  

In earlier work, a static partitioning algorithm was 
introduced [8] to scale the Subdue graph-based data 
mining algorithm using distributed processing. This type of 
parallelism is appealing in terms of memory usage and 
speedup. The input graph is partitioned into n partitions for 
n processors. Each processor performs Subdue on its local 
graph partition and broadcasts its best substructures to the 
other processors. A master processor gathers the results 
and determines the global best discoveries. However, this 
approach requires a network of workstations using 
communication software such as PVM or MPI. The 
knowledge discovered by each processor needs to be 
communicated to other processors. Our serial partitioning 
approach, implemented in the SSP-Subdue system, is 
unaffected by the communication problems of a distributed 
cluster as the partitions are mined one after the other on a 
single machine with the same processor playing the roles 
of slave and master processors in the static partitioning 
approach.

Serial Static Partitioning Using SSP-Subdue 

We have developed an algorithm that operates serially on 
smaller partitions of the graph and then compares the local 
results to acquire a measure of the overall best 
substructures for the entire graph.  
The input graph is partitioned into x partitions. We 
perform Subdue on each partition and collect the b best 
substructures local to each partition in a list, where b is the 
beam used to constrain the number of best substructures 
reported. We take care that for each partition, Subdue 
reports only the substructures that have not already been 
reported as locally-best on any of the previously-processed 
partitions. By doing so, we implicitly increase the beam 
dynamically. At the end of this pass, there are xb
substructures in the list. Then we evaluate these xb locally-
best substructures on all partitions in a second pass over 
the static partitions, similar to the partition approach 
applied to association rule mining [3]. Once all evaluations 
are complete, we gather the results and determine the 
global best discoveries. This is a serial approach and does 
not rely on parallel hardware. Figure 1 summarizes the 
basic algorithm. 

As a part of this research, we have generated a variant of 
the MDL measure, which is used to rank discoveries 
globally. SSP-Subdue measures graph compression using 
our measure variant given in Equation 2, where DL(S) is 
the description length of the substructure S being 
evaluated, DL(Gj|S) is the description length of the graph 
corresponding to the jth partition as compressed by 
substructure S, and DL(Gj) is the description length of the 
uncompressed jth partition. The substructure that 
minimizes the sum of DL(S) and DL(Gj|S) is the most 
descriptive substructure, and thus is locally the best. The 
smaller the value of the compression ratio of a 
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Figure 4. Partition 2
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Figure 2. Partition 1
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Figure 6. Global best substructures
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Figure 5. Local best substructures of partition 2
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Figure 3. Local best substructures of partition 1
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substructure, the higher will Subdue rank that substructure 
locally for the jth partition.  
The global best substructures are found by reevaluating the 
locally best substructures using Equation 3 on the other 
partitions. Here, S is a substructure in the common list. The 
common list represents a collection of all local best 
substructures.  The variable x represents the number of 
partitions, DL(S) is the description length of the 
substructure S under consideration, x

j=1DL(Gj|S) is the 
sum of description lengths of all the partitions after being 
compressed by the substructure S, and x

j=1DL(Gj) is the 
description length of the entire graph. The substructure 
with the minimum value of the compression ratio obtained 
from Equation 3 is ranked as globally the best 
substructure.

The following example illustrates the SSP-Subdue 
algorithm concepts. For this example input graph is split 
into two partitions.  Subdue is run on partition 1 shown in 
Figure 2 and the best substructures local to this partition, 
shown in Figure 3, are stored for global evaluation. Next, 
Subdue is run on partition 2 shown in Figure 4 and the best 
substructures local to this partition, shown in Figure 5, are 
stored for global evaluation. In a second pass over both of 
the static partitions, all of the locally-best substructures are 
evaluated using Equation 3 to produce the globally-best 

substructures shown in Figure 6. The instances of these 
globally best substructures are highlighted in the two 
partitions.

Edge-loss Recovery Approach 

The partitions are compressed using the globally best 
substructures found by running SSP-Subdue and then 
combined in pairs. Then the edges that were lost due to the 
original partitioning are reinserted between the combined 
partitions.
Since merging all possible combinations of two partitions 
that have edges cut between them could lead to a total of 
x(x-1)/2 combinations, each partition is constrained to be 
combined at most once with another partition. The pair of 
partitions that have the maximum number of edges cut 
between them are merged. Then the pair of partitions that 
have the second maximum number of edges cut between 
them are combined, and so on. This guarantees that two 
partitions are not combined unless they had any edges cut 
between them. However, this might sometimes lead to a 
matching such that some partitions are left that cannot be 
combined with any of the remaining unpaired partitions 
due to no edges cut at the boundaries. Here we are 
assuming that the compression and combining of partitions 
will not lead to a partition with a size too large to fit in 
dynamic memory.  Finally, SSP-Subdue is executed on the 
combined partitions to get the globally-best substructures. 
The following example illustrates our approach. The input 
graph, showsn in Figure 7, is divided into two parts.  As a 
result of this partitioning, all the instances of one of the 
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most frequently occurring substructures, “rectangle below 
triangle”, are lost. After running SSP-Subdue on the 
partitions shown in Figure 8, the substructures illustrated 
in Figure 9 are reported as the global best substructures. 
The two partitions are compressed using the above 
substructures and combined to form the graph shown in 
Figure 10. After running SSP-Subdue on the compressed 
graph shown in Figure 10, the substructures in Figure 11 
were reported as the best substructures. Clearly this set 
includes larger substructures encompassing the frequently-
occurring substructure, “rectangle below triangle,” which 
was initially lost due to the original partitioning. Thus, this 
approach proves useful in recovering the instances of those 
interesting substructures that are lost due to the original 
partitioning. However, a problem can occur when the best 
substructure is broken across partition boundaries, and 
subgraphs within this substructure are discovered in local 
partitions in different combinations with other subgraphs.  
The local discoveries would be used to compress the 
partitions and the original substructure will not be 
reformed and discovered in the second iteration. To remain 
consistent with the original Subdue algorithm, the 
compression could be performed using only the single best 
substructure found as opposed to the beam number of best 
substructures. Then the compressed subgraph would still 
appear as part of the original substructure and the best 
could be found. 

Learning Model to Deduce Number of 

Partitions

Np, the ideal number of partitions for a given graph, is an 
important parameter for SSP-Subdue that affects the 
quality of discovery as well as the run time. As a result, the 
user would benefit from receiving a suggested value of Np

from the system. 

Motivation for Employing a Learning Model 
The mechanism to find Np should be independent of the 
different versions and implementations of Subdue. Since 
Subdue is a main memory algorithm, Np depends on the 
amount of memory available for it to use during execution 
of the discovery algorithm after loading the input graph in 
memory. The amount of memory used during the 
execution of the discovery algorithm (Mused) is not a 
straightforward function of the size of the graph. It 
depends on several other factors directly related to the 
structure of the graph and those specific to Subdue’s 
parameters used to constrain the search for interesting 
patterns in the input graph. Thus, the mechanism to deduce 
Mused, and in turn Np, should be powerful enough to deduce 
the values based on all of the above factors.
Also, the actual amount of memory that a process is 
allowed to use (Mmax) is not necessarily equal to the 
amount of main memory available on a machine. It is in 
fact dependent on various other factors like number of 
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Figure 7. Unpartitioned graph G'
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Figure 11. Global best substructures
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processors running at a given time, the amount of main 
memory used by the operating system resident files and 
other limits and operating system parameters configured at 
the time of system installation and administration. Thus, it 
is unreasonable to consider a fixed value for Mmax.
Our goal is to predict the memory usage for any given 
graph when run with any combination of Subdue-specific 
parameters to aid in deducing the optimal number of 
partitions for that graph. We hypothesized that we could 
build a learning model to predict the amount of memory 
used (Mused) during the execution of the Subdue discovery 
algorithm for a graph provided the learning model is 
trained with enough training example graphs from a 
particular domain. The value of Mused could then be used to 
calculate Np, the ideal number of partitions for a given 
graph. We successfully validated our hypothesis for a 
constrained case by experimenting with graphs from a 
particular domain. 

The Approach 

Let param1…paramN represent the various parameters 
that govern the amount of memory used by Subdue. Then, 
we can use training examples with varying values of 
(param1…paramN) to build our learning model. This 
learning model can be used to predict the value of Mused for 
a new graph. If Mused exceeds Mmax, then the graph needs to 
be partitioned. 
With this new graph a set (param1…paramN, Mmax) is 
constructed and input to a similar learning model that can 
predict sg, the maximum size of graph that can be 
processed with Mmax, the amount of memory available for 
use by Subdue discovery algorithm. Now if the original 
graph to be partitioned is of size S, then the value of Np,
the number of partitions, can be calculated as S/sg.
We used Weka [9], a data mining software package, to 
build our learning model. Mmax can be estimated from the 
amount of free memory reported by the ‘free’ command of 
the Unix operating system.  

Features Influencing Memory Usage 
The features related to the structure of the input graph that 
influence the memory usage of the discovery algorithm are 
total number of vertices, total number of edges, total 
number of directed edges, total number of undirected 
edges, total number of unique vertex labels, total number 
of unique edge labels, variance in degree of vertices or 
connectivity, total number of disconnected graphs making 
up the input graph and compressive capacity of the best 
substructures.
The Subdue parameters that influence the amount of 
memory used by the discovery algorithm are the beam 
width of Subdue discovery algorithm, the number of 
different substructures considered in each iteration of the 
Subdue discovery algorithm, the maximum number of 
vertices that can exist in a reported substructure, the 
minimum number of vertices that can exist in a reported 
substructure, the method used for evaluating candidate 
substructures, the number of iterations of the Subdue 
discovery algorithm that will be executed on the input 

graph, the fraction of the size of an instance by which the 
instance can be different from the substructure definition. 
Varying the above parameters in all different possible 
combinations would require a large number of 
experimental tests. Besides, in most practical cases, most 
of the default Subdue parameters are used or one set of 
parameter values is used for all graphs from the same 
domain. Hence, we restricted our tests to some of the 
features related to the structure of the graph namely 
number of vertices and edges, number of directed and 
undirected edges, number of unique vertex and edge labels 
and variance in degree of vertices while keeping the 
Subdue-specific parameters set to their default values.  
Further, our initial attempt to learn Subdue’s memory 
requirement for a mix of graphs from different domains 
showed poor performance (about 15% predictive 
accuracy). This indicated that graphs from different 
domains are vastly different in their memory requirements 
and hence pose a very challenging job for the learning 
model. Thus, we restricted our tests to graphs from a single 
domain to see if the hypothesis can be validated for a 
constrained portion of the whole problem. 

Protein Database. The Protein Data Bank (PDB) is a 
worldwide repository for processing and distributing 3-D 
data structures for large molecules of proteins and nucleic 
acids. We converted the information in the given PDB file 
to a Subdue-formatted graph file corresponding to the 
compound described in the PDB file. Since we were 
mainly concerned with experimenting on graphs of varying 
sizes, the files from PDB used for our experiments were 
selected randomly and inclusion of no particular chemical 
compound was emphasized. We browsed the database to 
obtain the graphs of the required sizes.

Use of Decision Trees for Prediction 
Decision trees represent a supervised approach to 
classification. A decision tree is a simple structure where 
non-terminal nodes represent tests on one or more 
attributes and terminal nodes reflect decision outcomes.  
We used Weka to apply the J48 learning method to the 
PDB dataset and analyze its output. The J48 algorithm is 
Weka’s implementation of the C4.5 decision tree learner. 
C4.5 is a landmark system for decision tree induction 
devised by Ross Quinlan.  
We prefer to use decision trees over other classifiers since 
they have a simple representational form, making the 
inferred model relatively easy for the user to comprehend. 
Other classifiers like neural networks, although a powerful 
modeling tool, are relatively difficult to understand 
compared to decision trees. Decision trees can classify 
both categorical and numerical data, but the output 
attribute must be categorical. There are no prior 
assumptions made about the nature of the data. However, 
decision tree algorithms are unstable. Slight variations in 
the training data can result in different attribute selections 
at each choice point within the tree. The effect can be 
significant since attribute choices affect all descendent 
subtrees. Trees created from numeric data sets can be quite 
complex since attribute splits for numeric data are binary. 
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Figure 12. Learning Curve for graphs from PDB with 
a test set of 30 graphs. 

Experimental Results 

We randomly chose a set of 60 PDB datasets and 
converted them into Subdue-format graph files. All the 
relevant information required for populating Weka’s input 
file including number of vertices and edges, number of 
directed and undirected edges, number of unique vertex 
and edge labels, variance in degree of vertices and memory 
used for processing was calculated from each of the 
graphs. This comprised the training set for our learning 
model. The classes defined in the input file were the 
memory used for the processing of these graphs by Subdue 
(i.e., 1MB, 2MB, 3MB, 4MB, 5MB, 6MB, 8MB, 10MB, 
12MB, 14MB, 18MB, and 22MB), resulting in 12 possible 
classes. We used a test set comprising of 30 randomly-
selected graphs, with random class distribution, from the 
training set to evaluate our learning model. On applying 
the J48 algorithm to the PDB dataset, the J48 pruned tree 
(in text format), built using the training set, was obtained 
along with an estimate of the tree’s predictive 
performance. The test data derived the performance 
statistics. 24 test instances (80%) were classified correctly 
and 6 (20%) were misclassified out of a total of 30 
instances. In addition, the following measurements were 
derived from the class probabilities assigned by the tree.  

Kappa statistic                           0.765  
Mean absolute error      0.0347 
Root mean squared error             0.1323 
Relative absolute error                23.9333 % 
Root relative squared error         49.3356 %      

A kappa statistic of 0.7 or higher is generally regarded as 
good statistic correlation. In all of these error 
measurements, a lower value means a more precise model, 
with a value of 0 depicting the statistically-perfect model. 

Learning Curve. The learning model was trained on 
random subsets of varying sizes (5, 10, 15... 55, 60) from 
the 60 PDB graphs. A learning curve was plotted by 
recording the learning model’s percentage accuracy in 
prediction of the memory used by the graphs in the test set 
for each such training set. The learning curve, shown in 
Figure 12, was found to plateau at 80% predictive 
accuracy.

Conclusions

This research proposes an effective solution, in the form of 
a serial partitioning approach, to one of the main 
challenges for graph-based knowledge discovery and data 
mining systems, which is to scale up their data 
interpretation abilities to discover interesting patterns in 
large datasets without the need of any distributed or 
parallel resources. It also illustrates how information lost 
in the form of edges that are cut at the partition boundaries 
can be recovered and how the optimal number of partitions 
into which a graph needs to be divided into can be deduced 
automatically.   
The performance of the learning model on a constrained 
portion of the complete problem was encouraging enough 

to conclude that the system could be made to learn to 
predict the memory usage for a fresh graph similar to those 
it was trained on. One could enhance the model to include 
graphs from other domains but since graphs from different 
domains are vastly different in their memory requirements, 
they pose a very challenging job for the learning model. To 
learn a truly generic model, an exhaustive training set 
would be required comprising of all types of graphs from 
all possible different domains. The learning model will 
have better prediction accuracy when trained on graphs 
from a single domain since graphs from the same domain 
are similar in their memory requirements. 
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