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1.  Introduction

We live in an increasingly connected and automated society.  We are investigating monitoring and automation assistance in our most personal environment:  the home.  This integration of engineering and life science builds upon UTA's MavHome project [5], a home environment that perceives the state of the home through sensors and intelligently acts upon the environment through controllers.

As Lanspery, et al. state, "For most of us, the word `home' evokes powerful emotions [and is] a refuge" [10].  They note that older adults and people with disabilities want to remain in their homes even when their conditions worsen and the home cannot sustain their safety.  Furthermore, the problems of aging and disability are converging.  Improvements in medical care are resulting in increased survival into old age, thus problems of mobility, vision, hearing, and cognitive impairments will increase.  As the baby boomers enter old age, this trend will be magnified.  By 2040, 23% will fall into the 65+ category.  An AARP report [1] strongly encourages increased funding for home modifications that can keep older adults with disabilities independent in their own homes.

Our goal is to assist the elderly and individuals with disabilities by providing home capabilities that will monitor health trends and assist in the inhabitant's day to day activities in their own homes.  The result will save money for the individuals, their families, and the state.  We are seeking to meet this goal using the MavHome smart home environment.  MavHome is equipped with sensors that record inhabitant interactions with many different devices, medicine-taking schedules, movement patterns, and vital signs.  We have developed algorithms that learn patterns of activities from this data, and are applying these capabilities to health monitoring in the following ways:

· Perform secure, context-aware collection of inhabitant health and activity data,

· Use our data mining and prediction techniques to learn patterns in collected data,

· Identify trends that could indicate health concerns or a need for transition to assisted care,

· Detect anomalies in regular patterns that may require intervention, and

· Provide reminder and automation assistance for inhabitants.

By investigating these issues we can offer the community an intelligent system with learning algorithms that not only perform their individual tasks well, but also form a synergistic whole that is stronger than the parts.
2.  The MavHome Smart Home

We define an intelligent environment as one that is able to acquire and apply knowledge about its inhabitants and their surroundings in order to adapt to the inhabitants and meet the goals of comfort and efficiency.  These capabilities rely upon effective prediction, decision making, mobile computing, and databases.  With these capabilities, the home can control many aspects of the environment such as climate, water, lighting, maintenance, and entertainment.  Intelligent automation of these activities can reduce the amount of interaction required by inhabitants, reduce energy consumption and other potential wastages, and provide a mechanism for ensuring the health and safety of the environment occupants.

MavHome operations can be characterized by the following scenario.  To minimize energy consumption, MavHome keeps the house cool through the night.  At 6:45am, MavHome turns up the heat because it has learned that the home needs 15 minutes to warm to Bob's desired waking temperature.  The alarm sounds at 7:00am, after which the bedroom light and kitchen coffee maker turn on.  Bob steps into the bathroom and turns on the light.  MavHome records this manual interaction, displays the morning news on the bathroom video screen, and turns on the shower.  When Bob finishes grooming, the bathroom light turns off while the kitchen light and display turn on, and Bob's prescribed medication is dispensed to be taken with breakfast.  Bob's current weight and other statistics are added to previously collected data to determine health trends that may merit attention.  When Bob leaves for work, MavHome reminds Bob remotely that he usually secures the home and has not done so today.  Bob tells MavHome to finish this task and to water the lawn.  Because there is a 60% chance of rain, the sprinklers are run a shorter time to lessen water usage.  When Bob arrives home, the hot tub is waiting for him.  Bob has had a long day and falls asleep in the hot tub.  After 40 minutes MavHome detects this lengthy soak as an anomaly and contacts Bob, who wakes up and moves on to bed.
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MavHome's smart home capabilities are organized into a software architecture that seamlessly connects needed components while allowing improvements to be made to any of the supporting technologies.  Figure 1 shows the architecture of a MavHome agent.  Technologies are separated into four cooperating layers.  The Decision layer selects actions for the agent to execute.  The Information layer collects information and generates inferences useful for decision making.  The Communication layer routes information and requests between agents.  The Physical layer contains the environment hardware including devices, transducers, and network equipment.  The MavHome software components are connected using a CORBA interface.  Because controlling an entire house is a very large and complex learning and reasoning problem, the problem is decomposed into reconfigurable subareas or tasks.  Thus the Physical layer for one agent may in actuality represent another agent somewhere in the hierarchy, which is capable of executing the task selected by the requesting agent.

Perception is a bottom-up process.  Sensors monitor the environment (e.g., lawn moisture level) and, if necessary, transmit the information to another agent through the Communication layer.  The database records the information in the Information layer, updates its learned concepts and predictions accordingly, and alerts the Decision layer of the presence of new data.  During action execution, information flows top down.  The Decision layer selects an action (e.g., run the sprinklers) and relates the decision to the Information layer.  After updating the database, the Communication layer routes the action to the appropriate effector to execute.  If the effector is actually another agent, the agent receives the command through its effector and must decide upon the best method of executing the desired action.  Specialized interface agents allow interaction with users and external resources such as the Internet.  

Agents can communicate with each other using the hierarchical flow shown in Figure 1.  Several smart home projects have been initiated elsewhere, including Georgia Tech, MIT, University of Colorado at Boulder, and industry labs.  MavHome is unique in combining technologies from artificial intelligence, machine learning, and databases to create a smart home that acts as an intelligent agent.
3.  Learning to Identify Significant Episodes

In order to maximize comfort, minimize cost, and adapt to inhabitants, a smart home must rely upon tools from artificial intelligence such as data mining and prediction.  Prediction can be used to determine the inhabitant's next action.  Specifically, MavHome needs to identify repetitive tasks performed by inhabitants that establish a baseline for learning trends in behaviors, detecting anomalies, and determining repetitive tasks worthy of automation by the home.  The home can make this prediction based solely on previously-seen inhabitant activities and the current state of the inhabitant and the house.

A smart home inhabitant performs various routine activities, which may be considered as a sequence of events, with some inherent pattern of recurrence.  This repeatability leads us to the conclusion that the sequence can be modeled as a stationary stochastic process.   We can then perform inhabitant action prediction by first mining the data (using ED) to identify sequences of actions that are regular and repeatable enough to generate predictions, and by second using a sequence matching approach (Active LeZi) to predict the next action in one of these sequences.

Our Episode Discovery (ED) data mining algorithm is based on the work of Agrawal and Srikant [2] for mining sequential patterns from time-ordered transactions.  We move an examination window through the history of events or inhabitant actions, looking for episodes (sequences) within the window that merit attention, or significant episodes.  Each candidate episode is evaluated using the Minimum Description Length (MDL) principle. The MDL principle favors patterns that can be used to minimize the description length of a database by replacing each instance of the pattern with a pointer to the pattern definition.  A detected regularity factor (daily, weekly, or other automatically-detected time frame) further compresses the data because the sequence can be removed without storing a pointer to the sequence definition, and thus increases the value of a pattern.  Deviations from the pattern definition in terms of missing events, extra events, or changes in the regularity of the occurrence add to the description length because extra bits must be used to encode the change, thus lowering the value of the pattern.  The larger the potential amount of description length compression a pattern provides, the greater the impact that results from automating the pattern.

Our ED algorithm successfully identified daily and weekly patterns in synthetic data based on the MavHome scenario described earlier.  We also used ED to mine data that was collected in the MavHome lab environment from six students during the spring of 2003.  The dataset contains 618 interactions that are members of patterns occurring once a week, multiple times a week, and randomly.  ED successfully identified the patterns of three of the inhabitants as weekly significant episodes, and marked which of the 618 interactions contributed to the significant episodes [8].

The knowledge that ED obtains by mining the user action history can be used in a variety of ways.  First, the mined patterns provide information regarding the nature of activities in the home, which can be used to better understand lifestyle patterns and aid in designing homes and devices for the home.  Second, the significance of a current event as a member of a discovered pattern can be used in controlling the home, to determine whether this task is worth attempting to automate.  Third, knowledge of the mined sequences can improve the accuracy of predicting the next action, by only performing prediction for events known to be part of a common pattern.  We demonstrate the ability of ED to perform the third task, improving the accuracy of prediction algorithms, by adding the mined results as a preprocessor to two prediction algorithms.  Action sequences are first filtered by the mined sequences.  If a sequence is considered significant by ED, then predictions can be made for events within the sequence window.  

To test the filtering capabilities of ED, we coupled it with the IPAM sequential predictor [6] and a back-propagation neural network (BPNN).  We created a sequence of 13,000 actions based on five randomly-generated scenarios, a situation in which these algorithms by themselves may not perform well.  ED discovered 14 episodes in the data sets, and appreciably improved the accuracy of both algorithms across all five scenarios, as can be seen in Table 1.  Using ED, we improve the accuracy of the prediction algorithms by reducing the total number of incorrect predictions that can lead to inaccuracies in learned health trends, detected anomalies, and automated patterns.

	Scenario
	1
	2
	3
	4
	5
	   Average

	Events
	12958
	12884
	12848
	13058
	12668
	12883

	Episode

Candidates
	5745
	5608
	5619
	5655
	5496
	5625

	Significant

Episodes
	13
	13
	13
	13
	13
	13

	IPAM

Percentage

Correct
	39%
	42%
	43%
	40%
	41%
	41%

	IPAM+ED

Percentage

Correct
	77%
	84%
	69%
	73%
	65%
	74%

	BPNN

Percentage

Correct
	62%
	64%
	66%
	62%
	64%
	64%

	BPNN+ED

Percentage

Correct
	84%
	88%
	84%
	84%
	88%
	86%

	Processing

Time (s)
	11
	9
	10
	9
	9
	
      10


Table 1.  Prediction improvement results.
4.  Learning to Predict Inhabitant Actions

Prediction is an important component in a variety of domains in artificial intelligence and machine learning, which allows intelligent systems to make more informed and reliable decisions.  Certain domains require that prediction be performed on sequences of events that can typically be modeled as stochastic processes.  Especially common is the problem of sequential prediction:  given a sequence of events, how do we predict the next event based on a limited known history.  This is true, for example, when predicting inhabitant actions in a smart environment such as MavHome.  Prediction can be performed of upcoming inhabitant activities based on observed past activities.
Our prediction algorithm is based on the LZ78 text compression algorithm [12].  Good text compression algorithms have also been established as good predictors.  According to information theory, a predictor with an order (size of history used) that grows at a rate approximating the entropy rate of the source is an optimal predictor [7].
LZ78 processes an input string of characters, which in our case is a string representing the history of inhabitant actions interacting with devices in the home.  The prediction algorithm parses the input string x1,x2,…,xi into c(i) substrings, or phrases, w1, w2, …, wc(i) such that for all j>0, the prefix of the substring wj (i.e., all but the last character of wj) is equal to some wi for 1<i<j.  Because of the prefix property used by the algorithm, parsed substrings can be maintained in a trie along with frequency information.  

Consider the sequence of input symbols aaababbbbbaabccddcbaaa. An LZ78 parsing of this input string would yield the following set of phrases: a,aa,b,ab,bb,bba,abc,c,d,dc,ba,aaa. As described above, this algorithm maintains statistics for all contexts seen within each phrase wi. For example, the context a occurs 5 times (at the beginning of the phrases a, aa, ab, abc, aaa), the context bb is seen 2 times (bb,bba), etc. These context statistics are stored in a trie.
Because it is designed as a text compression algorithm, LZ78 requires some enhancements to perform effective prediction.  For example, we can see that the amount of information being lost across phrase boundaries grows with the number of possible states in the input sequence.  In our Active LeZi (ALZ) algorithm, we enhance LZ78 to recapture information lost across phrase boundaries.  Specifically, we maintain a window of previously-seen symbols, with a size equal to the length of the longest phrase seen in a classical LZ78 parsing.  The reason for selecting this window size is that the LZ78 algorithm is essentially constructing an approximation to an order-k Markov model, where k is equal to the length of the longest LZ78 phrase seen so far.  ALZ builds a better approximation to the order-k Markov model, because it has captured information normally lost across phrase boundaries.  As a result, we gain a better convergence rate to optimal predictability as well as achieve greater predictive accuracy.  Figure 2 shows the trie formed by the Active LeZi parsing of the input sequence aaababbbbbaabccddcbaaa.

To perform prediction, the algorithm calculates the probability of each symbol (action) occurring in the parsed sequence, and predicts the action with the highest probability.  To achieve optimal predictability, we must use a mixture of all possible order models (phrase sizes) when determining the probability estimate.  Active LeZi performs a second refinement of the LZ78 algorithm to combine this predictive information.  To accomplish this, we incorporate ideas from the Prediction by Partial Match (PPM) family of predictors, which has been applied to great effect in the mobility prediction work of Bhattacharya and Das [5].
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PPM algorithms consider different order Markov models to build a probability distribution.  This blending strategy assigns greater weight to higher-order models, in keeping with the advisability of making the most informed decision.  We employ the PPM strategy of exclusion [3] to gather information from all of the 1..k order models in assigning the next symbol its probability value.

As an example, consider our example string aaababbbbbaabccddcbaaa, ending in the phrase aaa.  Within this phrase, the contexts that can be used for prediction are all suffixes within the phrase, except itself (i.e., aa, a, and the null context).  From Figure 2 we see that an a occurs two out of the five times that the context aa appears, the other cases producing two null outcomes and one b. Therefore the probability of encountering a at the context aa is 2/5, and we now fall back (escape) to the order-1 context (i.e. the next lower order model) with probability 2/5. At the order-1 context, we see an a five out of the ten times that we see the a context, and of the remaining cases, we see two null outcomes. Therefore we predict symbol a at the order-1 context with probability 5/10, and escape to the order-0 model with probability 2/10. At the order 0 model, we see the a ten out of 23 symbols seen so far, and we therefore predict a with probability 10/23 at the null context. The blended probability of seeing a as the next symbol is therefore 2/5 + 2/5{5/10 + 2/10(10/23)}.

Using the synthetic data generator, we created thirty days of activities using six different scenarios and test the ability of Active LeZi to generate correct predictions, given a model built from all previous events, for the next 100 events.  In the first experiment, the data consists only of events drawn from the scenario definitions.  The predictive accuracy in this case converges to 100%, as shown in Figure 3.  For the second experiment we introduce noise in the form of events not part of any scenario and variations in event orderings.  In this case, the predictive accuracy does improve with the amount of training data, but converges to only 86% accuracy.


We also tested the ability of Active LeZi to perform prediction on the real data collected in the MavHome environment.  The accuracy of the model does improve with the amount of training data, but only converges to 48%.  However, this represents an improvement over random choice, which for this data would result in an average accuracy of 2%.  Combining ALZ with ED yields a 14% improvement in predictive accuracy for this data.

5.  Using a Smart Home to Assist Elderly and People with Disabilities
The data mining, prediction, and multiagent technologies available in MavHome can be employed to provide health care assistance in living environments.  Specifically, models can be constructed of inhabitant activities and used to learn activity trends, detect anomalies, intelligently predict possible problems and make health care decisions, communicate with caregivers, and provide automation assistance for inhabitants with special needs.

A variety of approaches have been investigated in recent years to automate caregiver services.  Many of the efforts offer supporting technologies in specialized areas, such as using computer vision techniques to track inhabitants through the environment and specialized sensors to detect falls or other crises.  Some special-purpose prediction algorithms have been implemented using factors such as measurement of stand-sit and sit-stand transitions and medical history, but are limited in terms of what they predict and how they use the results.  Remote monitoring systems have been designed with the common motivation that learning and predicting inhabitant activities is a key to effective automated health monitoring, but very little work has combined the remote monitoring capabilities with prediction for the purpose of health monitoring.  Some work has also progressed toward using typical behavior patterns to provide reminders, particularly useful for the elderly and patients suffering from various types of dementia [9,11,13].

Our project differs from these earlier explorations in that we are combining capabilities in the areas of data collection, remote monitoring, prediction, data mining, and knowledge engineering to provide predictive health monitoring assistance for inhabitants with disabilities and caregivers.  Instead of designing one specialized component, we propose to show that a smart environment can accomplish all of the tasks needed to identify patterns indicating or predicting a sudden or slow change in health status, to supply caregivers with periodic or emergency information, and to provide inhabitants with needed automation assistance.

Capability 1:  Perform Secure, Context-Aware Data Collection.  The first capability we are developing is that of remote collection of long-term activity and health status data.  Data will consist of monitored inhabitant activities, vital signs, and interactions with the environment, and will be collected using context-aware technology.
Our smart home environment is currently equipped to gather the following types of information:  1) inhabitant usage of any electrical device in the home, 2) usage of water in the home and amount, 3) temperature settings, 4) inhabitant weight, 5) inhabitant movement throughout the home, 6) prescribed and actual medicine dispensing schedule, 7) time, duration, and intensity of exercise, and 8) use of food items in kitchen.  Active sensors including wearable vital sign monitors can be integrated to further refine the model.

We are designing efficient algorithms for collecting real-time data that are context- and/or situation-aware.  For example, the inhabitant's current activity (e.g., cooking vs. watching television) or location in the environment (e.g., bedroom vs. navigating the stairs) can affect the choice of sensors to use, and thus represent a defined context.  The proposed data mining and prediction algorithms are highly scalable, a desirable feature when numerous tiny, portable sensor devices are involved.  Furthermore, the algorithms create personal profiles and hence provide customized solutions to individual patients.  There may also be a need for ad hoc collaboration of various entities in the system as the emergency need arises. These problems can be elegantly tackled with the help of pervasive computing and communications technology.

Dynamic discovery of services and information (e.g. data fusion from heterogeneous sources) is an integral part of any complex system that makes proactive decisions and supports context / situation-aware computing.  A service may be provided by an active or passive device like a sensor, a piece of software, a database, a communication channel or network, a person, or a combination thereof.  Many of the sensors and controllers will be connected to each other or a main computer through a wireless connection.  Therefore, service providers must also be able to authenticate, authorize and account for such services, satisfying the desired quality of service requirements such as communication link bandwidth, end to end delay, jitter, etc. for transmitting vital multimedia data and images.  We are undertaking a novel decision-theoretic approach to manage scare resources in wireless mobile and sensor networks based upon our prior work in this area.

Use of sensors in smart homes and on elderly or people with disabilities is critical for collecting, storing, and processing appropriate data intelligently and in a timely manner.  Also important is secure data transmission, routing, sharing, and authentication over the wireless sensor network and wireline network to care providers.

Data collection and processing needs to be backed by an infrastructure that allows anytime, anywhere reliable access to data sources (e.g., national data bases or vital records). This is crucial for the purpose of data mining, intelligent decision making and profiling. We will address the challenges of developing means to (i) locate relevant information securely, efficiently and transparently, (ii) extract, process, and integrate relevant information efficiently and securely, and (iii) interpret and communicate the processed information intelligently and seamlessly.

Moreover, wireless sensor and pervasive networks are highly vulnerable to various security attacks due to the nature of the medium (susceptible to eavesdropping and traffic jamming). An important challenge we will address is to develop authentication and key management protocols among various sensor nodes to set up a secure information sharing and communication.  This entails designing secure, robust and energy-efficient routing protocols in sensor networks. A secure routing protocol should also protect the integrity and authenticity of routing messages, and prevent attackers from modifying them or injecting harmful messages in the network.

Privacy of the information is highly required since personal information will be collected during the monitoring phase. This important issue will be addressed with the help of (i) proper compression and encoding algorithms so that only the device equipped with them will be able to see the content, (ii) a multilevel access scheme for stored information, and (iii) protected copying and transferring of the stored information with matching keys only.  These strategies will be implemented to protect the privacy of vital and personal data with a high level of confidence.

Capability 2:  Identify Trends in Long-Term Data.  The second health monitoring capability uses our data mining and prediction techniques to identify trends in long-term data.  Trends in time-varying data can be discovered and predicted using the same data mining and prediction techniques described earlier.  Instead of capturing individual events and readings to store in the trie and use for prediction, changes in these values over varying periods of time will be captured, stored, and predicted.  In particular, for each feature of interest, the qualitative change in value (increase, decrease, same) and quantitative relative change (numeric difference) will be recorded.  Because the chosen time steps are limitless in value and yet critical to learning trends, we will allow the user to determine the time step of choice (daily, weekly, monthly, etc.) and use auto-correlation techniques to automatically determine the time step most indicative of a temporal trend in the data.
The user can select features to monitor for trend analysis, including 1) change in mobility (schedule, time, room location, total movement), 2) change in amount of exercise, 3) change in deviation from prescribed medicine schedule, 4) change in amount of smart home requested assistance (reminders or automation assistance), 5) change in nutrition (types of food, number of calories), and 6) change in amount and types of activities.

Using the ED algorithm, long-term trends can be discovered from the raw data.  The algorithm can also be used to search for changes of a type of duration indicated by the user.  In addition, the prediction algorithm can be used to predict the upcoming changes in these features for the next time step.  Finally, we can use data from individuals assessed by practitioners to learn classes of patient types, such as patients who require a move to an assisted care facility.  Time-varying data captured for a particular individual can then be classified based on the learned models.

The result of this technology can be used in a number of ways.  For patients recovering from an illness or accident, the algorithms can be used to determine whether they are regaining strength and vitality at an acceptable rate.  For patients at risk of various types of accidents and health risk situations, the trends can be used to determine the current health risk and predicted short term health risk.  These analyses can aid a caregiver in deciding whether the individual requires a change in medication, activity schedule, care scheduling, or environment.

Capability 3:  Detect Anomalies in Current Data.  Another direct outcome of our work in data mining prediction is the ability to detect anomalies in collected data.  For the purpose of our work, we use the intuitive notion of an anomaly as a surprising or unusual occurrence.  With this notion in mind, the anomaly value of each monitored activity or captured feature value can be collected and used to provide health status information.
An important consideration in any anomaly-detection system is the regularity, or predictability, of the data.  Generally, the more predictable the data, the easier it is to detect anomalies.  As a result, the anomaly value of each data point is influenced first by the degree of membership of the current state in a significant episode, second by the significance value of the episode itself, and third by the deviation of the observed activity from the predicted activity given the known episode.

The degree of membership of the current state in any of the discovered significant episodes is calculated as the probability of occurrence of the episode given the immediate history of observed activities.  A probability is returned for each episode.  This probability is then multiplied with the significance of the episode itself to calculate the regularity of the data context.  The episode yielding the highest regularity value, episode i, represents the baseline for the anomaly calculation.  Once membership in episode i is established, the ALZ trie is used to provide the probability of the next predicted event e.  If the event that actually occurs has a very low probability given the context, the resulting event constitutes an anomaly.  If the regularity of the context is high and the probability of the observed event is low, this event should be flagged as an anomaly.  Thus the anomaly value of observed event e can be calculated as  
[image: image1.wmf])).

(

,

|

(

)

(

*

)

,

(

e

IHistory

Episode

e

P

Episode

ce

Significan

Episode

e

Member

A

i

i

i

=


Anomalies can be be handled in a manner appropriate to the nature of the event and anomaly value.  The criticality of events can be set by the user.  For example, an anomaly in predicted interactions with the house will typically have a low criticality and thus simply be recorded as an anomaly or prompt a reminder of the inhabitant of their normal routine.  For a more critical anomaly, such as a sudden disruption in vital signs, the home will first attempt to contact the inhabitant.  If contact cannot be made, the home will contact the caregiver.  Web cameras placed throughout the house can be used by the caregiver to check on the inhabitant in such a situation and intervene with a medical difficulty.

Capability 4:  Design Reminder Assistance System.  An additional benefit that our smart home data mining and prediction capabilities can offer is to provide a reminder system for inhabitants.  Reminders can be triggered by two situations.  First, if the inhabitant queries the home for his/her next routine activity, the activity with the highest probability will be given based on the ALZ prediction.  Second, for episodes with a high degree of significance and criticality, if the inhabitant deviates from the normal routine (creates an anomaly), the house will initiate contact with the inhabitant to remind him/her of the next expected activity.  Such a reminder service will be particularly beneficial for individuals suffering from dementia.  The reminder can enable the individual to feel secure about performing daily activities, and prevent accidents such as forgetting to turn off the water in the bathtub or keeping the doors unlocked when leaving the house.
Capability 5:  Provide Automation Assistance.  Intelligent automation of home activities can reduce the amount of manual home interaction required by inhabitants.  In earlier work, we have developed a decision-making algorithm to automate activities in the house [4].  Selection of actions for the house to take is based on suggestions from a reinforcement learning algorithm, which minimizes necessary manual intervention with the house and reduces actions with costly effects.  The decision maker relies on input from ALZ to suggest the typical next inhabitant action, and uses results from the ED data mining algorithm to segment the learning space and improve the quality of the learned results.
Users can specify specific activities they would like the house to automate (temperature control, control of hard-to-reach devices, etc.).  MavHome will then automate the activities based on learned preferences and action patterns.  In addition, if the inhabitant does not respond to a reminder of a critical event, MavHome will automate an activity to ensure safety of the individual.  Such actions include shutting off the bathwater, turning off the stove, or locking up the house when it is empty.

6.  MavHome Status
Initial algorithms are in place for data mining, mobility and action prediction, decision making, and automation.  These capabilities are being used in the MavHome lab (MavLab) and apartment (MavPad).  Figure 3 shows lights in the entryway (top left) and on Ryan's desk (bottom left) turning on in reaction to inhabitant activities (these automated actions are also reflected in the ResiSim 3D simulator).  We will next collect health-specific data and test it using volunteers living in MavPad and MavHome, as well as recruited residents of the C.C. Young Retirement Community in Dallas, Texas.

Figure 4.  MavHome lab environment.
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Figure 1.  MavHome agent architecture.





Figure 2.  Trie formed by sample history sequence.
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Figure 3.  Prediction performance on sample smart home data.
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