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Abstract

This paper describes a method for discov-
ering substructures in data using a fuzzy
graph match. A previous implementation of
the SUBDUE system discovers substructures
based on the psychologically-motivated crite-
ria of cognitive savings, compactness, connec-
tivity and coverage. However, the instances
in the data must exactly match the discov-
ered substructures. We describe a new imple-
mentation of SUBDUE that employs a fuzzy
graph match to discover substructures which
occur often in the data, but not always in the
same form. This fuzzy substructure discov-
ery can be used to formulate fuzzy concepts,
compress the data description, and discover
interesting structures in data that are found
either in their pure form or in a slightly con-
voluted form. Examples from the domains of
scene analysis and chemical compound anal-
ysis demonstrate the fuzzy discovery tech-
nique.

1 INTRODUCTION

Substructure discovery is the process of identify-
ing concepts describing interesting and repetitive
“chunks” of structure within structural descriptions
of the environment. Once discovered, the substruc-
ture concept can be used to simplify the descriptions
by replacing all instances of the substructure with a
pointer to the newly discovered concept. The discov-
ered substructure concepts allow abstraction over de-
tailed structure in the original descriptions and provide
new, relevant attributes for subsequent learning tasks.

The SUBDUE system [Holder, 1989] discovers substruc-
ture in structured data based on four heuristics: cog-
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nitive savings, connectivity, compactness and cover-
age. These heuristics are motivated from results in
gestalt psychology [Wertheimer, 1939]. Two short-
comings of the SUBDUE system are the reliance on
an expensive exact graph match and, therefore, the
inability to match discovered substructures to simi-
lar, but non-identical, instances in the data. Because
the heuristic value of a substructure greatly depends
on the number of instances found in the data, the in-
ability to match similar instances may prevent discov-
ery of important substructures. This paper describes
a less-expensive fuzzy graph match technique and its
implementation within the SUBDUE architecture. The
fuzzy graph match assigns a cost to the match be-
tween two graphs that can be transformed to a degree
of match similar to the membership functions of fuzzy
logic [Zadeh, 1973]. Using the fuzzy graph match,
SUBDUE can identify slightly different instances of sub-
structures and formulate the discovered substructures
as fuzzy concepts.

Section 2 defines the term substructure and describes
the SUBDUE substructure discovery system. Section 3
introduces inexact graph match and describes an effi-
cient algorithm to find fuzzy subgraph isomorphisms
and to determine the cost of such a match. Section 4
describes the integration of the inexact graph match
into the SUBDUE system, and Section 5 illustrates the
behavior of the system on two examples. Section 6 dis-
cusses the benefits and potential applications of fuzzy
substructure discovery and suggests future directions.

2 SUBSTRUCTURE DISCOVERY

Structured data from the environment is represented
as a graph within the substructure discovery system.
Objects in the environment map to nodes or small sub-
graphs in the graph, and relationships between objects
map to edges in the graph. A substructure is a con-
nected subgraph within the graphical representation of
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Figure 1: Example substructure
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Figure 2: Instances of the substructure

the environment. This graphical representation serves
as input to the substructure discovery system. Fig-
ure 1 shows a geometric example of such an input
graph. The objects in the figure (e.g., T1, S1, R1) be-
come labeled nodes in the graph, and the relationships
(e.g., on(T1,81), shape(C1,circle)) become labeled
edges in the graph.

An instance of a substructure in an input graph is a set
of nodes and edges from the input graph that match,
graph theoretically, to the graphical representation of
the substructure. For example, the instances of the
substructure in the example of Figure 1 are shown in
Figure 2. A neighboring edge of an instance of a sub-
structure is an edge in the input graph that is not
contained in the instance, but is connected to at least
one node in the instance. For example, the first in-
stance has one neighboring edge: on(S1,R1). An ez-
ternal connection of an instance of a substructure is a
neighboring edge of the instance that is connected to
at least one node not contained in the instance. There-
fore, on(S1,R1) is also the only external connection of
the first instance in Figure 2.

The substructure discovery algorithm used by SUB-
DUE is a computationally constrained best-first search
guided by four heuristics. =~ The algorithm begins
with the substructure matching a single node in the
graph. Each iteration through the algorithm selects
the heuristically-best substructure and expands the in-
stances of the substructure by one neighboring edge in
all possible ways. The new unique generated substruc-
tures become candidates for further expansion within
the best-first search paradigm. The algorithm searches
for the heuristically best substructure until all possible
substructures have been considered or the amount of
computation exceeds the given limit. Due to the large

number of possible substructures, the algorithm typi-
cally exhausts the allotted computation before consid-
ering all possible substructures. However, experiments
in a variety of domains indicate that the heuristics per-
form well in guiding the search toward more promising
substructures [Holder, 1988].

The four heuristics used by SUBDUE to evaluate a
substructure are cognitive savings, compactness, con-
nectivity and coverage. The first heuristic, cogni-
tive savings, is the underlying idea behind several
utility and data compression heuristics employed in
machine learning [Minton, 1988; Whitehall, 1987;
Wolff, 1982]. The cognitive savings of a substructure
represents the net reduction in complexity after con-
sidering both the reduction in complexity of the input
graph after replacing each instance of the substructure
by a single conceptual entity and the gain in complex-
ity associated with the conceptual definition of the new
substructure. The reduction in complexity of the input
graph can be computed as the number of instances of
the substructure multiplied by the complexity of the
substructure. Thus, the cognitive savings of a sub-
structure s for an input graph G is computed as

cognitive_savings(s, Q)
= complexity_reduction(s, G) — complexity(s)
= complexity(s) x [#instances(s,G) — 1]

In SUBDUE’s substructure discovery algorithm, the
complexity(s) is defined as the size (#nodes+#edges)
of the graph representing the substructure. Since the
instances may overlap in the input graph, #instances
is the number of unique instances, which may be a
fractional number.

The second heuristic, compactness, is a generaliza-
tion of Wertheimer’s Factor of Closure, which states
that human attention is drawn to closed structures
[Wertheimer, 1939)]. A closed substructure has at least
as many edges as nodes, whereas a non-closed sub-
structure has fewer edges than nodes [Prather, 1976).
Thus, closed substructures have a higher compactness
value. Compactness is defined as the ratio of the num-
ber of edges in the substructure to the number of nodes
in the substructure.

compactness(s) = 7#edges(s)

#nodes(s)
The third heuristic, connectivity, measures the amount
of external connection in the instances of the sub-
structure. The connectivity heuristic is a variant of
Wertheimer’s Factor of Prozimity [Wertheimer, 1939]
that demonstrates the human preference for “isolated”
substructures. Connectivity measures the “isolation”



of a substructure by computing the inverse of the av-
erage number of external connections over all the in-
stances of the substructure in the input graph. The
connectivity of a substructure s with instances I in
the input graph G is computed as

|
> ic1 lexternal_conns(i)|

connectivity(s,G) =

The final heuristic, coverage, measures the fraction of
structure in the input graph described by the substruc-
ture. Although cognitive savings measures the amount
of structural, the coverage heuristic includes the rele-
vance of this savings with respect to the size of the
entire input graph. Coverage is defined as the num-
ber of unique nodes and edges in the instances of the
substructure divided by the total number of nodes and
edges in the input graph. Thus, the coverage of a sub-
structure s with instances I in the input graph G is
computed as

_ #unique_nodes(I)+#unique_edges(I)
covemge(s, G) - #objects(G)+#relations(G)

Since the cognitive compression of our environment is
one of the main goals in our search for repetitive struc-
ture, the cognitive savings heuristic is the main heuris-
tic controlling the substructure discovery process. The
compactness, connectivity and coverage heuristics re-
fine the cognitive savings by increasing or decreasing
the value to reflect specific qualities of the substruc-
ture. The cognitive savings has units of graph size;
whereas, the other three heuristics are unitless ratios.
The value of a substructure s for an input graph G is
computed as the product of the four heuristics. Ap-
plying the heuristic evaluation to the substructure in
Figure 1, value = 15 % 3/2 % 1/3 %« 20/37 = 4.054.

3 FUZZY GRAPH MATCH

Although exact structure match can be used to find
many interesting substructures, many of the most in-
teresting substructures show up in a slightly differ-
ent form throughout the data. These differences may
be due to noise and distortion, or may just illustrate
slight differences between instances of the same gen-
eral class of structures. Consider the image shown in
Figure 3. The pencil and the cube would make ideal
substructures in the picture, but an exact match algo-
rithm may not consider these as strong substructures
because they rarely occur in the same form and orien-
tation throughout the picture.

Given an input graph and a set of defined substruc-
tures, we want to find those subgraphs of the input

Figure 3: Scene analysis example

graph that most closely resemble the given substruc-
tures, and we want to associate a similarity measure
with a pair of graphs consisting of a given substruc-
ture and a subgraph of the input graph. We adopt the
approach to inexact graph match given by Bunke and
Allermann [1983].

In this fuzzy match approach, each distortion of a
graph is assigned a cost. A distortion is described in
terms of basic transformations such as deletion, inser-
tion, and substitution of nodes and edges. The cost
for deleting (or inserting) a node with label A is de-
noted by DELNODE(A) (or INSNODE(A)). The cost for
substituting a node with label A by a node with label
B is given as SUBNODE(A, B). Similarly, SUBEDGE(a,
b) is the cost for an edge substitution. Defining costs
for edge deletion and insertion is slightly more difficult
since these transformations are dependent on the bor-
dering nodes. When a node is deleted, then all of its
outgoing and incoming edges vanish also. Conversely,
when inserting a node, there are usually edges to be
inserted also to properly embed this node in the rest of
the graph. As a consequence, we define DELEDGE(a)
and INSEDGE(a) as the costs for deletion and insertion
of an edge with label a while none of the bordering
nodes are deleted or inserted, respectively. Specific
substitution costs provide a means for the user to ex-
press a priori knowledge about the problem domain.
Low costs should indicate high likelihood for a partic-
ular transformation and vice versa.



Figure 4: Two similar graphs g, and ga.

A fuzzy graph match between two graphs g; and g
maps g1 to gs such that g, is interpreted as a distorted
version of g;. Formally, a fuzzy graph match is a map-
ping f : N; = NoU{A}, where Ny and N, are the sets
of nodes of g1 and gs, respectively. A node v € Ny that
is mapped to A (i.e., f(v) = A), is deleted. That is, it
has no corresponding node in go. Given a set of partic-
ular distortion costs as discussed above, we define the
cost of a fuzzy graph match cost(f), as the sum of the
cost of the individual error transformations resulting
from f. An example is shown in Figure 4. Assume our
fuzzy subgraph match is f(1) = 3, f(2) =4, and let

SUBNODE(A, B) = SUBNODE(B, A) =1,

SUBEDGE(a, b) = 1, SUBEDGE(b, a) = 2

DELEDGE(a) = DELEDGE(b) = 2,
(

DELNODE(A) = DELNODE(B) = 2.

Then cost(f) = SUBNODE(A, B) + SUBNODE(B, A) +
SUBEDGE(a, b) + DELEDGE(b) = 5.

Given graphs ¢, with n nodes and g, with m nodes,
m > n, there are = different fuzzy graph matches,
each having a dlfferent cost, in general. We define
the subgraph similarity of g; and g2, s(g1,92), as one
minus the fraction of the minimum cost fuzzy graph
match between g; and go over the size of the larger
graph. That is,

s(g1,92) = 1—
min¢{cost(f) |f is a fuzzy graph match between g; and g2}
maz(nodesg, +edgesy, ,nodesy, +edgesgy, )

If g; is identical to g2, then s(g1,92) = 1. The less
similar the two graphs are, the closer to 0 the similarity
measure will become. If the cost of the match is greater
than the size of the larger graph, s(g1, g2) is defined to
be 0.

Given ¢1, g2, and a set of distortion costs, the actual
computation of s(gi,g2) can be done by a tree search
procedure. A state in the search tree corresponds to
a partial match that maps a subset of the nodes of g;
to a subset of the nodes in go. Initially, we start with
an empty mapping at the root of the search tree. Ex-
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Figure 5: Search tree for computing the similarity be-
tween g; and go in Figure 4.

panding a state corresponds to adding a pair of nodes,
one from g; and one from gs, to the partial mapping
constructed so far. A final state in the search tree
is a match that maps all nodes of g; to g» or to A.
The complete search tree of the example in Figure 4
is shown in Figure 5. The numbers in circles in this
figure represent the cost of a state. As we are even-
tually interested in the mapping with minimum cost,
each state in the search tree gets assigned the cost of
the partial mapping that it represents. Thus the goal
state to be found by our tree search procedure is the
final state with minimum cost among all final states.
From Figure 5 we conclude that the minimum cost
fuzzy graph match of g; and g5 is given by the map-
ping f(1) = 4, f(2) = 3. The cost of this mapping
is 2 and therefore the similarity between g; and g» is
1 — 2. = 0.667. This similarity depends not only on
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g1 and go, but also on the distortion costs.

The order of complexity of the fuzzy graph match is
equivalent to that of exact graph match!; however, the
fuzzy match offers the additional benefit of assigning
a similarity measure to each possible mapping. There-
fore, integrating the fuzzy match into SUBDUE incurs
no additional computation cost, and allows SUBDUE
to consider fuzzy instances of the discovered substruc-
tures.

4 FUZZY SUBSTRUCTURE
DISCOVERY

Integration of the fuzzy graph match into SUBDUE im-
plies that the graph match routine will now return a
cost of the match instead of true or false. The higher
the cost, the worse the match between the substructure
and instance. This match cost requires changes in the
heuristic formulas such that the values are weighted by
the match cost. First, we define the instance weight w

!Bunke and Allermann [1983] provide a more complete
discussion of the inexact graph match and its computa-
tional complexity.



of an instance ¢ of a substructure s to be

wii,s) =1 — matcfchos?E(z',s)
size(i)

where size(i) = #nodes(i) + #edges(i). If the match
cost is greater than the size, then w(i,s) = 0. Com-
pared to the previous heuristics, the new heuristics,
shown below, are a weighted average over the in-
stances. In these formulas, s is the substructure, G
is the input graph, and I is the set of instances of s
in G. Since every subgraph in G fuzzy matches a sub-
structure to some extent, the set of instances of a sub-
structure is filtered using a user-supplied upper-bound
on the match cost of an instance. In the formula for
coverage the unique_struct(i) of an instance 4 is the
number of nodes and edges in ¢ that have not already
appeared in previous instances in the summation.

cognitive_savings(s) = lz w(i, 8) * size(i)] —size(s)
iel

. #relations(i)
Y ierw(i, s) Fobjects(i)

1|

compactness(s) =

1]
Y icr w(i, 8) * lexternal conns(i)|

connectivity(s) =

> icr w(i, 8) * unique_struct(i)
size(G)

coverage(s) =

One purported benefit of substructure discovery is the
ability to reduce the cognitive complexity of the in-
put environment by replacing instances of a substruc-
ture with only a pointer to the substructure defini-
tion. However, now that instances of a substructure
may no longer be exact matches, replacement is more
difficult. In the exact match case, instances can be re-
placed with a single node representing the substructure
with edges to nodes representing the original nodes of
the substructure instance involved in external connec-
tions. Replacing fuzzy instances while preserving the
ability to reproduce the original input graph involves
additional edges to nodes describing the graph distor-
tions required to produce the original instance from
the substructure definition. Further fuzzy substruc-
ture discovery would ignore these distortion annota-
tions. Assuming the substructure is sufficiently large
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Figure 6: Substructures found in pencil scene

and the number of distortions is small, this replace-
ment process will still result in compression of the in-
put graph. If exact reproduction of the input graph
is not required, the distortion annotations can be re-
moved from the graph, affording addition compression.

5 EXAMPLES

The first example comes from the domain of scene
analysis and uses a graphical representation of the im-
age in Figure 3. This representation consists of two
types of edges (edge and space) and three types of
nodes (L, T and A). An edge edge represents a line in
the image, and a space edge links the non-overlapping
pencils together. The node labels come from the Waltz
labeling [Waltz, 1975] of the junctions of the lines in
the image, where A stands for an arrow junction. At
this stage, we have not included distance information
in the graph representation, but such information is
easy to add. Using this representation, a line drawing
of the image would consist of rectangles (pencils stuck
in the surface), partially occluded rectangles (overlap-
ping pencils), and rectangles with triangles on the end
(pencils with sharp points).

For this example, all graph distortion costs were set to
one, and the threshold on the match cost was two (i.e.,
a fuzzy instance is no more than two distortions from
the substructure). Figure 6 shows three substructures
discovered by SUBDUE in the graphical image. Each
substructure has several exact instances, but Figure 6
only shows the fuzzy instances. The first substructure
is the rectangle with fuzzy instances that deviate from
the rectangle by one line. The second substructure is
the full, sharp pencil with one fuzzy instance being
a pencil with a dull or hidden point. The third sub-
structure forms a partially occluded pencil with two



Figure 7: Cortisone
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Figure 8: Substructures found in Cortisone compound

fuzzy instances deviating from the substructure by a
single line. Thus, SUBDUE identified the major repli-
cated components of the image along with similar, but
not identical, instances. Less similar fuzzy instances
might be included by increasing the upper bound on
the match cost.

The second example comes from the domain of chem-
ical structure analysis. Figure 7 shows the structural
formula for the organic compound Cortisone. The
graph representation of the compound consists of five
types of node: C (carbon), O (oxygen), OH, CHs, and
CH,OH; and two types of edges: single bond and dou-
ble bond. The hexagons in Figure 7 have a single car-
bon at each vertex, and each side represents a single
bond unless accompanied by a second parallel line.

As in the first example, all distortion costs were set to
one, and the threshold on match cost was two. Fig-
ure 8 shows two substructures discovered by SUBDUE
in the Cortisone example. The first is a three carbon
chain connected by single bonds. The second substruc-
ture is a ring of six carbons connected by single bonds.
In addition to these substructures, Figure 8 also shows
some of the fuzzy instances matching the substructure.
Each fuzzy instance differs from the substructure by
one edge; therefore, the match cost is low.

As in the image example, SUBDUE identifies some
highly repetitive substructures within the chemical
compound. Again, increasing the match cost upper
bound threshold would allow less similar instances. In
the image example, the discovered substructures could
now be used to re-express the image in terms of the
three types of pencils. This would greatly reduce the
complexity of the graph representation. The advan-
tages in the chemical analysis domain would come from
discovering previously-unknown molecules and reduc-
ing the cognitive complexity of the compound by ab-
stracting over discovered molecules.

6 CONCLUSIONS

Substructure discovery allows the identification of in-
teresting and repetitive chunks of structure in a struc-
tural representation of the environment. The substruc-
tures may be used as new concepts found in the envi-
ronment and as a means of reducing the complexity of
the representation by abstracting over instances of the
substructure. However, the instances of a substruc-
ture found in the environment rarely occur in the exact
same form. Adding the fuzzy graph match to the sub-
structure discovery process incurs little computational
penalty, allows the discovery of fuzzy concepts, and
enhances the ability to compress the representation of
the environment.

Fuzzy substructure discovery has numerous applica-
tions as evidenced by the examples in Section 5.
One application is image analysis in which SUBDUE
may find interesting substructures in the image cor-
responding to frequent similar objects in the environ-
ment. The instances can be replaced with a pointer
to the substructure definition to effect image compres-
sion. The fuzzy graph match also has applications
in image recognition for finding similar instances of
a previously-discovered substructure in a new envi-
ronment. Another application of fuzzy substructure
discovery is in the domain of chemistry and molecu-
lar biology for finding interesting molecules or com-
pounds that afford significant cognitive compression
of the chemical compounds.

Further experimentation is necessary to validate the
interestingness and accuracy of the discovered sub-
structures. Interestingness could be validated by hu-
man expert approval of substructures discovered in
real domains. Accuracy could be validated by quanti-
fying the compression afforded by discovered substruc-
tures and attempting to discover substructures pur-
posefully embedded in a large graph structure. Exper-
imentation is also necessary to determine the effects of
the distortion costs and match cost threshold on the



discovered substructures; especially since these param-
eters offer a means by which a user could supply the
discovery process with domain-specific information.

One enhancement to SUBDUE will add the ability to
weight the various heuristics so that the user can
include domain-specific knowledge into the discovery
process. Future directions will take advantage of a new
capability in the fuzzy graph match to dynamically
change graphs. In other words, if the graph represents
a visual image from a camera, as the camera moves,
the graph of the image changes as well. This capability
will allow SUBDUE to dynamically discover substruc-
tures that did not appear in the original graph.
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