
Inference of Node Replacement Recursive Graph Grammars

Jacek P. Kukluk, Lawrence B. Holder, and Diane J. Cook

 {kukluk, holder, cook} @cse.uta.edu
Department of Computer Science and Engineering

University of Texas at Arlington
Box 19015, Arlington, TX 76019

Abstract

In this paper we describe an approach to learning
node replacement graph grammars. This approach is
based on previous research in frequent isomorphic
subgraphs discovery. We extend the search for
frequent subgraphs by checking for overlap among
the instances of the subgraphs in the input graph. If
subgraphs overlap by one node we propose a node
replacement grammar production. We also can infer a
hierarchy of productions by compressing portions of
a graph described by a production and then infer new
productions on the compressed graph. We validate
this approach in experiments where we generate
graphs from known grammars and measure how well
our system infers the original grammar from the
generated graph. We briefly discuss other grammar
inference systems indicating that our study extends
classes of learnable graph grammars.

Keywords: Grammar Induction, Graph

Grammars, Graph Mining.

1. Introduction

String grammars are fundamental to linguistics and
computer science. Graph grammars can represent
relations in data which strings cannot. Graph
grammars can represent hierarchical structures in
data and generalize knowledge in graph domains.
They have been applied as analytical tools in physics,
biology, and engineering [Gernert97, Milo02]. In this
paper we study the problem of grammar inference.
We introduce an algorithm which builds on previous
work in discovering frequent subgraphs in a graph
[Cook94]. We check if subgraphs overlap and if they
overlap by one node, we use this node and subgraph
structure to propose a node replacement graph
grammar. A vast amount of research has been done in
string grammar inference [Sakakibara97]. We found
only a few studies in graph grammar inference, which
we now describe.

Jeltsch and Kreowski [Jeltsch90] did a theoretical
study of inferring hyperedge replacement graph
grammars from simple undirected, unlabeled graphs.
Their paper leads through an example where from
four complete bipartite graphs K3,1 , K3,2 , K3,3 , K3,4 ,
the authors describe the inference of a grammar that
can generate a more general class of bipartite graphs
K3,n , where 1≥n . The authors define four operations
that lead to a final hyperedge replacement grammar.
The operations are: INIT, DECOMPOSE, RENAME,
and REDUCE. The INIT operation will start the
process from a grammar which has all sample graphs
in its productions and therefore it generates only the
sample graphs. Then, the DECOMPOSE operation
transforms the initial productions into productions
that are more general but can still produce every
graph from the sample graphs. RENAME allows for
changing names of non-terminal labels. REDUCE
removes redundant productions. They start the
process from a grammar which has all the sample
graphs in its productions. Then they transform the
initial productions into productions that are more
general but can still produce every graph from the
sample graphs. Their approach guarantees that the
final grammar will generate graphs that contain all
sample graphs.

Oates et al. [Oates03] discuss the problem of
inferring probabilities of every grammar rule for
stochastic hyperedge replacement context free graph
grammars. They call their program Parameter
Estimation for Graph Grammars (PEGG). They
assume that the grammar is given. Given a structure
of a grammar S and a finite set of graphs E generated
by grammar S, they ask what are the probabilities θ
associated with every rule of the grammar. Their
strategy is to look for a set of parameters θ that
maximizes the probability p(E| S, θ).

In terms of similarity to string grammar inference we
consider the Sequitur system developed by Nevill-
Manning and Witten [Nevill97]. Sequitur infers
hierarchical structure by replacing substrings based
on grammar rules. The new, compressed string is
searched for substrings which can be described by

Accepted for publication in the 2006 SIAM Conference on Data Mining.

grammar rules, and they are then compressed with
the grammar and the process continues iteratively.
Similarly, in our approach we replace the part of a
graph described by the inferred graph grammar with
a single node and we look for grammar rules on the
compressed graph and repeat this process iteratively
until the graph is fully compressed.

The most relevant work to this research is Jonyer et
al.’s approach to node-replacement graph grammar
inference [Jonyer02, Jonyer04]. Their system starts
by finding frequently occurring subgraphs in the
input graphs. Frequent subgraphs are those that when
replaced by single nodes minimize the description
length of the graph. They check if isomorphic
instances of the subgraphs that minimize the measure
are connected by one edge. If they are, a production
S→ PS is proposed, where P is the frequent
subgraph. P and S are connected by one edge. Our
approach is similar to Jonyer’s in that we also start by
finding frequently occurring subgraphs, but we test if
the instances of the subgraphs overlap by one node.
Jonyer’s method of testing if subgraphs are adjacent
by one edge limits his grammars to description of
“chains” of isomorphic subgraphs connected by one
edge. Since an edge of a frequent subgraph
connecting it to the other isomorphic subgraph can be
included to the subgraph structure, testing subgraphs
for overlap allows us to propose a class of grammars
that have more expressive power than the graph
structures covered by Jonyer’s grammars. For
example, testing for overlap allows us to propose
grammars which can describe tree structures, while
Jonyer’s approach does not allow for tree grammars.

In our approach we use the frequent subgraph
discovery system Subdue developed by Cook and
Holder [Cook94]. We would like to mention other
systems developed to discover frequent subgraphs
and therefore having potential to be modified into a
system which can infer a graph grammar. Kuramochi
and Karypis [Kuramochi01] implemented the FSG
system for finding all frequent subgraphs in large
graph databases. FSG starts by all frequent one and
two edge subgraphs. Then, in each iteration, it
generates candidate subgraphs by expanding the
subgraphs found in the previous iteration by one
edge. In every iteration, the algorithm checks how
many times the candidate subgraph occurs within an
entire graph. The candidates, whose frequency is
below a user-defined level, are pruned. The algorithm
returns all subgraphs occurring more frequently than
the given level. In the candidate generation phase,
computation costs of testing graphs for isomorphism
are reduced by building a unique code for the graph
(canonical labeling).

Yan and Han introduced gSpan [Yan02], which does
not require candidate generation to discover frequent
substructures. The authors combine depth first search
and lexicographic order in their algorithm. Their
algorithm starts from all frequent one-edge graphs.
The labels on these edges together with labels on
incident nodes define a code for every such graph.
Expansion of these one-edge graphs maps them to
longer codes. The codes are stored in a tree structure
such that if),,,(10 maaa K=α

and),,,,(10 baaa mK=β , then the β code is a child

of the α code. Since every graph can map to many
codes, the codes in the tree structure are not unique.
If there are two codes in the code tree that map to the
same graph and one is smaller then the other, the
branch with smaller code is pruned during depth first
search traversal of the code tree. Only the minimum
code uniquely defines the graph. Code ordering and
pruning reduces the cost of matching frequent
subgraphs in gSpan.

The challenge of using frequent subgraph mining
systems like gSpan or FSG to infer graph grammars
would be the modification to allow subgraph
instances to overlap. Overlapping substructures are
available as an option in the Subdue system
[Cook94]. Also, Subdue allows for identification of
one substructure with the best compression score,
which we can modify to identify one grammar
production with the best score, while FSG and gSpan
return all candidate subgraphs above a user-defined
frequency level leaving interpretation and final
selection for the user.

In the remainder of the paper we introduce the
definition of the discussed graph grammars. Next we
introduce an algorithm which we describe informally
using an example. Afterwards, we give a more formal
description. Then, we show experiments to reveal the
advantages and limitations of our method. We close
with some conclusions and future directions.

2. Node replacement recursive graph
grammar

We give the definition of a graph and graph
grammars which is relevant to our implementation.
The defined graph has labels on vertices and edges.
Every edge of the graph can be directed or
undirected. The definition of a graph grammar
describes the class of grammars that can be inferred
by our approach. We emphasize the role of recursive
productions in the name of the grammar, because the
type of inferred productions are such that the non-

terminal label on the left side of the production
appears one or more times in the node labels of a
graph on the right side. It is the main characteristic of
our grammar productions. Our approach can also
infer non-recursive productions. The embedding
mechanism of the grammar consists of connection
instructions. Every connection instruction is a pair of
vertices that indicate where the production graph can
connect to itself in a recursive fashion. Our graph
generator can generate a larger class of graph
grammars than defined below. We will describe the
grammars used in generation later in the paper.

A labeled graph G is a 6-tuple,

()LEVG ,,,,, ηνμ= , where

V - is the set of nodes, VVE ×⊆ - is the set of
edges, LV →:μ - is a function assigning labels to

the nodes, LEv →: - is a function assigning labels

to the edges, }1,0{: →Eη - is a function assigning
direction property to edges (0 if undirected, 1 if
directed). L - is a set of labels on nodes and edges.

A node replacement recursive graph grammar is a
tuple ()PGr ,,, ΓΔ∑= , where

∑ - is an alphabet of node labels,

Δ - is an alphabet of terminal node labels, ∑⊆Δ ,
Γ - is an alphabet of edge labels, which are all
terminals,
P - is a finite set of productions of the
form),,(CGd , where Δ−∑∈d , G is a graph, and
there are two types of productions:
(1) recursive productions of the form),,(CGd ,

with Δ−∑∈d , G is a graph, where there is at least
one node in G labeled d . C is an embedding
mechanism with a set of connection instructions,

VVC ×⊆ , where V is the set of nodes of G . A

connection instruction Cvv ji ∈),(implies that

derivation can take place by replacing iv in one

instance of G with jv in another instance of G . All

the edges incident to iv are incident to jv . All the

edges incident to jv remain unchanged

 (1) non-recursive production, there is no node in G
labeled d (our inference system does not infer an
embedding mechanism for these productions).

3. The algorithm

We will describe an algorithm informally allowing
for an intuitive understanding of the idea. An

example in Figure 1 shows a graph composed of
three overlapping substructures. The algorithm
generates candidate substructures and evaluates them
using the following measure of compression,

()
() ()SGsizeSsize

Gsize

|+

where G is the input graph, S is a substructure and
SG | is the graph derived from G by compressing

each instance of S into a single node. ()gsize can be
computed simply by summing the number of nodes
and edges: () () ()gedgesgverticesgsize += . Another

successful measure of ()gsize is the Minimum
Description Length (MDL) discussed in detail in
[Cook94]. Either of these measures can be used to
guide the search and determine the best graph
grammar. In our experiments we used only the size
measure.

Figure 1: A graph with overlapping substructures

and a graph grammar representation of it.

In Figure 1, the subgraphs overlap at nodes 3 and 4.
The algorithm starts by finding nodes with the same
label. There are seven nodes labeled “a” and three
nodes labeled “b”. The single node labeled “a”
becomes a candidate substructure with seven
instances I1={1}, I2={3}, I3={4}, I4={6}, I5={7},
I6={9}, I7={10}. The numbers in parentheses refer to
the nodes in Figure 1. This initial substructure will be
expanded by a node and an edge in each iteration of
the algorithm’s main discovery loop. Similarly, the
initial substructure of a node labeled “b” and its
instances are determined. Both of these substructures
are expanded simultaneously. Let us follow the
expansion of only one substructure, which starts from
all nodes labeled “b.” Table 1 gives the instance
expansion at every step and a substructure value We
expand the instances I by edge labeled y and a vertex
labeled a, which gives us the set of instances I’.
Instances I can also be expanded by edge z or x.

Similarly, we expand I’ by edge z and a vertex a,
which gives us I’’. I’ can also be expanded by edge
x. We omit in Table 1 alternative expansions of I by
z, x and I’ by x. These additional expansions are part
of our algorithm. They lead to the same solution.
When the set of instances I’’ is expanded by the edge
with label x, we detect an overlap, i.e., two or more
instances share the same node. The overlapping
instances of the substructure allow us to propose the
recursive graph grammar shown on the bottom of
Figure 1. This grammar can compress the entire
graph to one node and has a better substructure value
than any other substructure discovered so far.

The grammar from Figure 1 consists of a graph
isomorphic to three overlapping substructures and
connection instructions. We find connection
instructions when we check for overlaps. In this
example there are two connection instructions 1-3
and 1-4. Hence, in generation of a graph from the
grammar, in every derivation step an isomorphic
copy of the subgraph definition will be connected to
the existing graph by connecting node 1 of the
subgraph to either a node 3 or a node 4 in the existing
graph. The grammar shown on the bottom in Figure 1
cannot only regenerate the graph shown on the top,
but also generate generalizations of this graph.
Generalization in this example means that the
grammar describes graphs composed from one or
more star looking substructures of four nodes labeled
“a”, “b”. All these substructures overlap on a node
with label “a”.

Our graph grammar inference method is based on
Cook et al.’s [Cook94] substructure discovery system
called Subdue. Subdue is looking for repetitive,
highly-compressing subgraphs. The algorithm starts
by finding all nodes with the same label. It maintains
a list of the best subgraphs found so far. In each
iteration new candidates for the best subgraphs are
created by expanding all the subgraphs in the list by
one edge or edge and a node. Then, candidates for the
best subgraphs are evaluated. In the evaluation
process, every occurrence of a candidate subgraph
within the entire graph is temporarily replaced by a
new node. The compression achieved with this
replacement is measured by calculating minimum

description length or size (number of nodes + number
of edges) of an original and compressed graph. Only
subgraphs with the highest compression ratio remain
in the list of the best subgraphs.

The input to our algorithm is a graph G which can be
one connected graph or set of disconnected graphs. G
can have directed edges or undirected edges. The
algorithm assumes labels on nodes and edges. The
algorithm processes the list of substructures Q. In
Figure 2 we see an example of a substructure
definition. A substructure consists of a graph
definition and a set of instances from the input graph
that are isomorphic to the graph definition. The
example in Figure 2 is a continuation of the example
in Figure 1. The numbers in parentheses refer to
nodes of the graph in Figure 1.

The algorithm starts with a list of substructures where
every substructure is a single node and its instances
are all nodes in the graph with this node label. The
best substructure is initially the first substructure in
the Q list. We extend each substructure in Q in all
possible ways by a single edge and a node or only by
single edge if both nodes are already in the graph
definition of the substructure. We allow instances to
grow and overlap, but any two instances can overlap
by only one node. We keep all extended substructures
in newQ. We evaluate substructures in newQ. The
recursive substructure is evaluated along with non-
recursive substructures and is competing with non-
recursive substructures. The total number of
substructures considered is determined by the input
parameter Limit. We compress G with best
substructure. Compression replaces every instance of
best substructure with a single node. This node is
labeled with a non-terminal label. The compressed
graph is further processed until it cannot be
compressed any more. In consecutive iterations best
substructure can have one or more non-terminal
labels. It allows us to create a hierarchy of grammar
productions. The input parameter Beam specifies the
width of a beam search, i.e., the length of Q. For
more details about the algorithm see [Cook94,
Jonyer02, Jonyer04].

Table 1. Expansion of instances which start from nodes labeled “b” in Figure 1.

Expansion Instances ()
() ()SGsizeSsize

Gsize

|+

initial instances I ={ I1={2}, I2={5}, I3={8}} 19/(1+19)=0.95
I expanded by y I’ ={ I1={2, 3}, I2={5, 6}, I3={8, 9} } 19/(3+13)=1.19
I’ expanded by z I’’={ I1={2, 3, 4}, I2={5, 6, 7}, I3={8, 9, 10}} 19/(5+7)=1.58
I’’ Expanded by x I’’’ ={ I1={2, 3, 4, 1}, I2={5, 6, 7, 3}, I3={8, 9, 10, 4}} (overlap !) 19/(7+1)=2.38

Figure 2 assists us in explaining conversion of
substructure S into recursive substructure. Every
instance graph has two positive integers assigned to
it. One integer, in parentheses in Figure 2, is the
number of a node in the processed graph G. The
second integer is a node number of an instance graph.
The instances are isomorphic to the substructure
graph definition and instance node numbers are
assigned to them according to this isomorphism.
Given pair of instances (I1, I2) we examine if there is
a node Gv∈ , which also belongs to I1 and I2. We find
two overlapping nodes, [3] and [4], examining node
numbers in parentheses in the example in Figure 2.
Having the number of node Gv∈ we find
corresponding to v two node numbers of instance

graphs 1IvI ∈ and 2
' IvI ∈ . The pair of integers

),('
II vv is a connection instruction. There are two

connection instructions in Figure 2: 1-3 and 1-4. If

),('
II vv is not already in list of connections

instructions for recursive substructure, we include it.

Figure 2: Substructure and its instances while

determining connection instructions (continuation of
the example from Figure 1)

A recursive instance is a connected subgraph of G
which can be described by the discovered grammar
production. It means that for every subset of
instances {Im, Im+1, …, Il} from the instance list of
substructure S, in which union Im ∪ Im+1 ∪… ∪ Il
is a connected graph, we create one recursive
instance IRk= Im ∪ Im+1 ∪… ∪ Il . The recursive
instances are no longer isomorphic as instances of S
and they vary in size. Every recursive instance is
compressed to a single node in the evaluation
process.

Subdue uses a heuristic search whose complexity is
polynomial in the size of the input graph [Cook00].
Our modification does not change the complexity of
this algorithm. The overlap test is the main
computationally expensive addition of our grammar
discovery algorithm. Analyzing informally, the
number of nodes of an instance graph is not larger

than V, where V is the number of nodes in the input
graph. Checking two instances for overlap will not

take more than)V(2O time. The number of pairs of

instances is no more than 2V , so the entire overlap

test will not take more than)V(4O time.

4. Hierarchy of productions

In our first example from Figure 1, we described a
grammar with only one production. Now we would
like to introduce a complex example to illustrate the
inference of a grammar which describes a more
general tree structure. In Figure 3 we have a tree with
all nodes having the same label.

a b cS1 a b c

(S1)

(S1) (S1)

1

2 3 4

Connection
instructions

1-2
1-4

x yS2 x y

Connection
instructions

1-2
1-3

1

2 3

(S2)

(S2) (S2)

S2

K2

S2

S1

K1 K3S

a b c K2 K3

a b c a b c

a b cx y

x y

a b c

x yx y

x y

K1

a b c

a)

b)

Figure 3: The tree (a) and inferred tree grammar (b).

There are two repetitive subgraphs in the tree. One
has three edges labeled “a,” “b,” and “c.” The other
has two edges with labels “x” and “y.” There are
also three edges K1, K2, and K3 which are not part of
any repetitive subgraph. In the first iteration we find
grammar production S1, because overlapping
subgraphs with edges “a,” “b,” and “c” score the
highest in compressing the graph. Examining
production S1, we notice that node 3 is not involved
in connection instructions. It is consistent with the
input graph where there are no two subgraphs
overlapping on this node. The compressed graph, at
this point, contains the node S1, edges K1, K2, K3
and subgraphs with edges “x” and “y.” In the second
iteration our program finds all overlapping
substructures with edges “x” and “y” and proposes

production S2. Compressing the tree with production
S2 results in a graph which we use as an initial
production S, because the graph can be compressed
no further. In Figure 3 productions for S1 and S2
have graphs as terminals. We will omit drawing
terminal graphs in subsequent figures. The tree used
in this example was used in our experiments, and the
grammar on the right in Figure 3 is the actual inferred
grammar.

5. Experiments

5.1. Methodology
Having our system implemented, we faced the
challenge of evaluating its performance. There are an
infinite number of grammars as well as graphs
generated from these grammars. In our experiments
we restricted grammars to node replacement
grammars with two productions. The second
production replaces a non-terminal node with a single
terminal node. In Figure 4 we give an example of
such a grammar. The grammar on the left is of the
form used in generation. The grammar on the right is
the inferred grammar in our experiment. The inferred
grammar production is assumed to have a terminating
alternative with the same structure as the recursive
alternative, but with no non-terminals. We omit
terminating production in Figure 4.

Figure 4: Example of graph grammar used in the

experiments.

We developed a graph generator to generate graphs
from a known grammar. We can generate directed or
undirected graphs with labels on nodes and edges.
Our generator produces a graph by replacing a non-
terminal node of a graph until all nodes and edges are
terminal. The generation process expands the graph
as long as there are any non-terminal edges or nodes.
Since selection of a production is random according
to the probability distribution specified in the input
file, the number of nodes of a generated graph is also
random. We place limits on the size of the generated
graph with two parameters: minNodes and maxNodes.
We generate graphs from the grammar until the
number of nodes is between minNodes and
maxNodes. We distinguish two different distorting

operations to the graph generated from grammar:
corruption and added noise. Corruption involves the
redirection of randomly selected edges. The number
of edges of a graph multiplied by noise gives the
number of redirected edges, where noise is a value
from 0 to 1. We redirect an edge),(21 vve = by

replacing nodes 1v and 2v with two new, randomly

selected graph nodes 1'v and 2'v . When we add noise,
we do not destroy generated graph structure. We add
new nodes and new edges with labels assigned
randomly from labels used in already generated graph
structure. We compute the number of added nodes
from the formula (noise/(1- noise))*
*number_of_nodes. The number of added edges we
find from (noise/(1- noise))*number_of_edges. A
new edge connects two nodes selected randomly
from existing nodes of the generated structure and
newly added nodes.

We associate probabilities with productions used in
generation. These probabilities define how often a
particular production is used in derivations.
Assigning probabilities to productions helps us to
control the size of the generated graph. Our inference
system does not infer probabilities. Oates et al.
[Oates03] addresses the problem of inferring
probabilities assuming that the productions of a
grammar are given. We are considering inferring
probabilities along with productions as a future work.

We examined grammars with one, two, and three
non-terminals. The first productions of the grammars
have an undirected, connected graph with labels on
nodes and edges on the right side. We use all
possible connected simple graphs with three, four,
and five nodes as the structures of graphs used in the
productions. There are twenty nine different simple
connected undirected unlabeled graphs [Read98]. We
show them in Figure 7. Our graph generator
generates graphs from the known grammar that is
based on one of the twenty nine graph structures.
Then we use our inference system to infer the
grammar from the generated graph. We measure an
error between the original and inferred grammar. We
use MDL as a measure of the complexity of a
grammar. Our results describe the dependency of the
grammar inference error on complexity, noise,
number of labels, and size of generated graphs.

5.2. MDL as a measure of complexity of a
grammar

We seek to understand the relationship between
graph grammar inference and grammar complexity,
and so need a measure of grammar complexity. One

such measure is the Minimum Description Length
(MDL) of a graph, which is the minimum number of
bits necessary to completely describe the graph. The
MDL measure, which while not provably minimal, is
designed to be a near-minimal encoding of a graph.
See [Cook94] for a more detailed discussion.

Since all the grammars in our experiments have two
productions and the second production replaces a
non-terminal with a single node, the complexity of
the grammar will vary depending only on the graph
on the right side of the first production. We would
like our results for one, two and three non-terminal
grammars to be comparable; therefore we do not
want our measure of complexity of a grammar to be
dependent on the number of non-terminals. In every
graph used in the productions we reserve three nodes.
We give the same label to these nodes. When we
generate a graph, we replace one, two, or three labels
of these nodes with the non-terminal S when we need
a grammar with one, two or three non-terminals.
However, when we measure MDL of a graph we
leave the original three labels unchanged. In our
experiments we always use that same non-terminal
label. In the general case a production can contain
different non-terminals. Every non-terminal would
need to be counted as a different label of a graph and
MDL would increase with increasing number of non-
terminals.

5.3. Error
We introduce a measure to compare the original
grammar to the inferred grammar. Our definition of
an error has two aspects. First, there is the structural
difference between the inferred and the original graph
used in the productions. Second, there is the
difference between the number of non-terminals and
the number of connection instructions. If there is no
error, the number of non-terminals in the original
grammar is the same as the number of connection
instructions in the inferred grammar. We compute the
structural difference between graphs with an
algorithm for inexact graph match initially proposed
by Bunke and Allermann [Bunke83]. For more
details see also [Cook94]. We would like our error to
be a value between 0 and 1; therefore, we normalize
the error by having in the denominator the sum of the
size of the graph used in the original grammar and
the number of non-terminals. We do not allow an
error to be larger than 1; therefore, we take the
minimum of 1 and our measure as a final value.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

=
NTg

NTCIgg
Error

#)size(

##),(matchCost
,1min

1

21 ,

where

)g,matchCost(21g is the minimal number of

operations required to transform 1g to a graph

isomorphic to 2g , or 2g to a graph isomorphic to

1g . The operations are: insertion of an edge or node,
deletion of a node or an edge, or substitution of a
node or edge label. CI# is the number of inferred
connection instructions. NT# is the number of non-
terminals in the original grammar.)size(1g is the
sum of the number of nodes and edges in the graph
used in the grammar production

5.4. Experiment 1: Error as a function of
noise and complexity of a grammar

We used twenty nine graphs from Figure 7 in
grammar productions. We assigned different labels to
nodes and edges of these graphs except three nodes
used for non-terminals. We generated graphs with
noise from 0 to 0.9 in 0.1 increments. For every value
of noise and MDL we generated thirty graphs from
the known grammar and inferred the grammar from
the generated graph. We computed the inference error
and averaged it over thirty examples. We generated
8700 graphs to plot each of the three graphs in Figure
5. The first plot shows results for grammars with one
non-terminal. The second and the third plot show
results for grammars with two and three non-
terminals. We did not corrupt the generated graph
structure in experiments in Figure 5. As noise we
added nodes and edges to the generated graph
structure. Figure 6 has the same results as Figure 5
with the difference that we corrupted the graph
structure generated from the grammar and then we
added nodes and edges to the graph.

We see trends in the plots in Figure 5 and Figure 6.
Error decreases as MDL increases. A low value of
MDL is associated with small graphs, with three or
four nodes and a few edges. These graphs, when used
on the right hand side of a grammar production,
generate graphs with fewer labels than grammars
with high MDL. Smaller numbers of labels in the
graph increase the inference error, because
everything in the graph looks similar, and the
approach is more likely to propose another grammar
which is very different than the original. As expected,
the error increases as the noise increases in
experiments with corrupted graph structure.
However, there is little dependency of an error from
the noise if the graph generated from the grammar is
not corrupted (Figure 5).

.

 one non-terminal two non-terminals three non-terminals

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

Figure 5: Error as a function of noise and MDL where graph structure was not corrupted.

 one non-terminal two non-terminals three non-terminals

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

Figure 6: Error as a function of noise and MDL where graph structure was corrupted.

Figure 7: Twenty nine simple connected graphs ordered according to non-decreasing MDL value.

Table 2: Twenty nine simple graphs ordered according to increasing average inference error of six experiments in
Figure 5 and Figure 6. The numbers in the table refer to structures in Figure 7.

We average the value of an error over ten values of
noise which gives us the value we can associate with
the graph structure. It allowed us to order graph

structures used in the grammar productions based on
average inference error. In Figure 7 we show all
twenty nine connected simple graphs with three, four

1 21 17 22 15 8 10 23 28 20 27 29 19 26 12 16 3 18 4 24 25 9 5 7 14 6 13 11 1 2
2 21 23 22 15 18 16 17 20 19 9 28 12 10 14 26 13 27 25 8 24 29 4 5 7 3 6 11 2 1
3

N
ot

C

or
ru

pt
ed

21 15 23 16 17 19 18 14 9 13 28 12 27 26 25 24 5 10 4 29 22 6 20 7 11 2 8 1 3
1 8 10 12 21 17 15 20 23 16 19 18 22 13 14 9 27 4 28 25 3 7 29 24 6 26 5 11 1 2
2 9 17 19 16 21 13 18 8 15 14 10 12 25 27 23 22 24 20 26 28 4 3 6 5 29 7 11 1 2 N

um
be

r
of

no

n-
te

rm
in

al
s

3 C
or

ru
pt

ed

9 19 14 12 18 16 13 15 21 17 4 23 10 25 27 26 5 6 24 20 28 22 29 8 7 3 11 1 2

and five nodes used in productions ordered in non-
decreasing MDL value of a graph structure. In Table
2 we give an order of graph structures for six
experiments with corrupted and non-corrupted
structures and one, two, and three non-terminals. The
numbers in the table refer to structure numbers in
Figure 7. We see in Table 2 that graph number 21 is
close to the beginning of the list in all six
experiments. Graphs number 1, 2, and 11 are close to
the end of all six lists. We conclude that when graph
number 21 is used in the grammar production, it is
the easiest for our inference algorithm to find the
correct grammar. When graph number 1, 2, or 11 is
used in the grammar production and generated graphs
have noise present, we infer grammars with some
error. We also observe a tendency of decreasing error
with increasing MDL in the graph orders in Table 2.
Graph 29 has the highest MDL, because it has the
most nodes and edges. In five experiments graph 29
is closer to the end of the list

Quantitative definition of an error allows us to
automate the process and perform tests on thousands
of graphs. The error is caused by a wrongly inferred
graph structure used in the production or number of
connection instructions which is too large or too
small. However, there are cases where the inferred
grammar represents the graph well, but the graph in
the production has a different structure. For example,
we observed that the grammar with MDL=55.58 and
graph number 11 causes an error even if we infer the
grammar from graphs with no corruption and zero
noise. The inferred graph structure contains two
overlapping copies of the graph used in the original
grammar production. We illustrate it in Figure 8. The
structure has significant error, yet does subjectively
capture the recursive structure of the original
grammar.

S
a

60% 40%
a

b
SS

c
dg

h

*
e f

Original grammar

a

b
aa

c
dg

h

e f

b
aa

c
dg

h

e
f

1
2

3 4

5

6 7

Connection
instructions

1-4
1-7

(S)

(S)

(S)

S

Inferred grammar

Figure 8: An inference error where larger graph

structure is proposed.

5.5. Experiment 2: Error as a function of
number of labels and complexity of a
grammar

We would like to evaluate how error depends on the
number of different labels used in a grammar. We
restricted graph structures used in productions to
graphs with five nodes. Every graph structure we
labeled with 1, 2, 3, 4, 5 or 6 different labels. For
every value of MDL and number of labels we
generated 30 different graphs from the grammar and
computed average error between them and the
learned grammars. The generated graphs were
without corruption and without noise. We show the
results for one, two, and three non-terminals in
Figure 10. Below the three dimensional plots, for
clarity, we give two dimensional plots with triangles
representing the errors. The larger and lighter the
triangle the larger is the error. We see that the error
increases as the number of different labels decreases.
We see on the two dimensional plots the shift in error
towards graphs with higher MDL when the number
of non-terminals increases.

The average error for graphs with only one label is 1
or very close to 1. The most frequent inference error
results from the tendency of our algorithm to propose
one-edge grammars when inferred from a graph with
only one label. We illustrate this in Figure 9 where
we see a production with a pentagon using only one
label “a”. The inferred grammar has one edge with
two connection instructions 1-1 and 1-2. Since all the
edges in the generated graph have the same label and
all the nodes have the same label, this grammar
compresses the graph well and is evaluated highly by
our compression-based measure. However, this one-
edge grammar cannot generate even a single
pentagon. An evaluation measure which penalizes
grammars for an inability to generate an input graph
would bias the algorithm away from single-edge
grammars and could correct the one-edge grammar
problem. However, this approach would require
graph-grammar parsing, which is computationally
complex.

 original grammar inferred grammar

Figure 9: Error where inferred grammar is reduced to

production with single edge.

5.6. Experiment 3: Error as a function of
size of a graph and complexity of a
grammar

We generated graphs from grammars with two non-
terminals and noise=0.2. The number of nodes of the
generated graphs was from the interval [x, x+20],

where we change x from 20 to 420. For each value of
x and MDL we generated thirty graphs and compute
average inference error over them. We show in
Figure 11 the results for corrupted and not corrupted
graph structure. We concluded that there is no
dependency between the size of a sample graph and
inference error.

 one non-terminal two non-terminals three non-terminals

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

20 40 60 80
0

1

2

3

4

5

6

7

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

20 40 60 80
0

1

2

3

4

5

6

7

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

20 40 60 80
0

1

2

3

4

5

6

7

Figure 10 : Error as a function of MDL and number of different labels used in a grammar definition.

100
200

300
400

20

40

60

80

0

0.5

1

100
200

300
400

20

40

60

80

0

0.5

1

Figure 11: Error as a function of MDL and size of
generated graphs (noise=0.2, two non-terminals): (a)

uncorrupted graph structure, (b) corrupted graph
structure

5.7. Experiment 4: Limitations

In Figure 12 we show an example illustrating the
limits of our approach. In Figure 12 (a) we have a
graph consisting of overlapping squares. All labels on
nodes are the same, and we omit them. The squares
do not overlap by one node but by an edge. Our
algorithm assumes that only one node overlaps in the
instances of the substructure and therefore infers the
grammar shown in Figure 12(b). The inferred
grammar can generate chains, an example of which is
shown in Figure 4 (c). The original input graph is not
in the set of graphs generated by the inferred
grammar. An extension of our method to overlapping
edges would allow us to infer the correct grammar in
this example.

Figure 12: Graph with overlapping squares (a),
inferred grammar (b), and graph generated from

inferred grammar (c)

Figure 13 shows another example illustrating the
limits of our algorithm. The first graph in the first
production on the left is a square with two non-
terminals labeled S1, and the graph of the second
production is a triangle with one non-terminal labeled
S. Our algorithm is not designed to find alternating
productions of this type. We generated a graph from
the grammar on the left, and the grammar we inferred
is on the right in Figure 13. The inferred grammar has
one production in which the graph combines both the
triangle and square. The set of graphs generated by
alternating squares and triangles according to the
grammar from the left does not match exactly the set
of graphs of the inferred grammar. Nevertheless, we
consider it an accurate inference, because the inferred
grammar will describe the majority of every graph
generated by the original grammar.

Figure 13: The grammar with alternating productions

(left) and inferred grammar (right).

5.8. Experiment 5: Chemical structure

As an example from the real-world domain of
chemistry, we use the structure of cellulose with
hydrogen bonding as the input graph in our next
experiment. Figure 14 shows the structure of the
molecule and the grammar production we found in

this structure. The grammar production we found
captures the underlying motif of the chemical
structure. It shows the repetitive connected
component, the basic building block of the structure.
We can search for such underlining building motifs
in different domains, hoping that they will improve
our understanding of chemical, biological, computer,
and social networks.

(a)

(b)

Figure 14: The structure of cellulose with hydrogen
bonding (a) and the inferred grammar production (b).

6. Conclusion and future work

We described an algorithm for inferring certain types
of graph grammars we call recursive node
replacement graph grammars. The algorithm is based
on previous work in frequent substructure discovery.
It checks if frequent subgraphs overlap by a node and
proposes a graph grammar if they do. The algorithm
we described has its limitations: the left side of the
production is limited to one single node; only
connecting two single nodes is allowed in
derivations. The algorithm finds recursive
productions if repetitive patterns occur within an
input graph and they overlap. If such patterns do not
exist, the algorithm finds non-recursive productions
and builds hierarchical structure of the input data.
Grammar productions with graphs of higher
complexity measured by MDL are inferred with

smaller error. There is little dependency of error on
noise if the generated graphs are not corrupted. The
error of grammar inference increases as the number
of different labels used in the grammar decreases.
There is no dependency between the size of a sample
graph and inference error. If all labels on nodes are
the same and all labels on edges are the same, the
algorithm produces a grammar which has only one
edge in the graph definition. One-edge grammars
over-generalize if the input graph is a tree, and they
are inaccurate in many other graphs. This tendency to
find one-edge grammars from large, connected
graphs is due to the fact that one-edge grammars
score high because they can compress the graph well.

Grammars inferred by the approach developed by
Jonyer et al. [Jonyer04] were limited to chains of
isomorphic subgraphs which must be connected by a
single edge. Since the connecting edge can be
included in the production’s subgraph, and
isomorphic subgraphs will overlap by one vertex, our
approach can infer Jonyer et al.’s class of grammars.
As we noticed in our experiment shown in Figure 12
when the subgraphs overlap by more than one node,
our algorithm still looks for overlap on only one node
and infers a grammar which cannot generate the input
graph. Therefore one extension to the algorithm
would be a modification which would allow for
overlap larger than a single node.

The evaluation method can be modified to avoid one-
edge grammar productions in graphs with one label.
We are exploring other domains where data can be
represented as a graph composed from smaller
structures to further test our inference system and
examine it as a data mining tool for these domains.
We are continuing our research in graph grammar
inference to develop methods allowing for discovery
of more powerful classes of graph grammars than
discussed in this paper.

References

[Bunke83] H. Bunke and G. Allermann, Inexact
graph matching for structural pattern recognition.
Pattern Recognition Letters, 1(4) 245-253. 1983

[Cook00] D. Cook and L. Holder, Graph-
Based Data Mining. IEEE Intelligent Systems, 15(2),
pages 32-41, 2000.

[Cook94] D. Cook and L. Holder, Substructure
Discovery Using Minimum Description Length and
Background Knowledge. Journal of Artificial
Intelligence Research, Vol 1, (1994), 231-255

[Doshi02] S. Doshi, F. Huang, and T. Oates,
Inferring the Structure of Graph Grammar from
Data. Proceedings of the International Conference on
Knowledge Based Computer Systems (KBCS'02)

[Gernert97] D. Gernert, Graph grammars as an
analytical tool in physics and biology. Biosystems
1997, vol. 43, no. 3, pp. 179-187(9)

[Jeltsch90] E. Jeltsch, H. Kreowski,
Grammatical Inference Based on Hyperedge
Replacement. Graph-Grammars. Lecture Notes in
Computer Science 532, 1990: 461-474

[Jonyer02] I. Jonyer, L. Holder, and D. Cook,
Concept Formation Using Graph Grammars,
Proceedings of the KDD Workshop on Multi-
Relational Data Mining, 2002.

[Jonyer04] I. Jonyer and L. Holder, and D.
Cook, MDL-Based Context-Free Graph Grammar
Induction and Applications. International Journal of
Artificial Intelligence Tools, Volume 13, No. 1 pages
65-79, 2004.

[Kuramochi01] M. Kuramochi and G. Karypis,
Frequent subgraph discovery. In Proceedings of
IEEE 2001 International Conference on Data Mining
(ICDM '01), 313-320, 2001.

[Milo02] R. Milo, S. Shen-Orr, S. Itzkovitz, N.
Kashtan, D. Chklovskii, and U. Alon1, Network
Motifs: Simple Building Blocks of Complex Networks,
Science. Vol 298, Issue 5594, 824-827 , 2002

[Nevill97] G. Nevill-Manning and H. Witten,
Identifying Hierarchical Structure in Sequences: A
linear-time algorithm. Journal of Artificial
Intelligence Research, Vol 7, (1997), 67-82

[Oates03] T. Oates, S. Doshi, and F. Huang.
Estimating Maximum Likelihood Parameters for
Stochastic Context-Free Graph Grammars. In T.
Horváth and A. Yamamoto, editors, Proceedings of
the 13th International Conference on Inductive Logic
Programming, volume 2835 of Lecture Notes in
Artificial Intelligence, pages 281--298. Springer-
Verlag, 2003.

[Read98] R Read and R. Wilson, An Atlas of
Graphs. Oxford University Press, 1998

[Sakakibara97] Y. Sakakibara, Recent advances of
grammatical inference. Theoretical Computer
Science, 185:15-45, 1997.

[Yan02] X. Yan and J. Han, gSpan: Graph-
based substructure pattern mining. In IEEE
International Conference on Data Mining, Maebashi
City, Japan, December 2002.

